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ACQUISITION AND PROCESSING OF ATMOSPHERIC
BOUNDARY LAYER DATA

Much of what we know about the structure of the boundary layer is empirical, the
result of painstaking analysis of observational data. As our understanding of the
boundary layer evolved, so did our ability to define more clearly the requirements
for sensing atmospheric variables and for processing that information. Decisions
regarding choice of sampling rates, averaging time, detrending, ways to minimize
aliasing, and so on, became easier to make. We find we can even standardize most
procedures for real-time processing. The smaller, faster computers, now within
the reach of most boundary layer scientists, offer virtually unlimited possibilities
for processing and displaying results even as an experiment is progressing.

The information we seek, for the most part, falls into two groups: (1) time-
averaged statistics such as the mean, variance, covariance, skewness, and kurtosis
and (2) spectra and cospectra of velocity components and scalars such as temper-
ature and humidity. We discuss them separately because of different sampling and
processing requirements for the two. A proper understanding of these requirements
is essential for the successful planning of any experiment.

In this chapter we discuss these considerations in some detail with examples
of methods used in earlier applications. We will assume that sensors collecting the
data have adequate frequency response, precision, and long-term stability and that
the sampling is performed digitally at equally spaced intervals. We also assume that
the observation heights are chosen with due regard to sensor response and terrain
roughness.

7.1 Time-averaged statistics

For calculations of means and higher order moments we need time series that are
long enough to include all the relevant low-frequency contributions to the process,
sampled at rates fast enough to capture all the high-frequency contributions the
sensors are able to measure. Improper choices of averaging times and sampling
rates can indeed compromise our statistics. We need to understand how those two
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factors affect our measurements in order to make sensible decisions on how long
and how fast to sample.

7.1.1 Choice of averaging time

Ideally, the statistical quantities we would use to describe the properties of turbu-
lent flow would be those obtained by “ensemble” averaging (i.e., averaging over
many realizations under identical conditions). In reality we are forced to describe
them in terms of averages over time, making the “ergodic” hypothesis that time
averages are, for all practical purposes, equivalent to ensemble averages. For this
assumption to be true, the fluctuations must be statistically stationary over the pe-
riod chosen for analysis. Only then can we justify the application of the Reynolds
averaging rules (Appendix 7.1), which specify conditions the data must satisfy for
proper separation of the fluctuating components from the mean.

Statistical stationarity of a time series «(¢) demands that variances and co-
variances approach stable values as the averaging time 7 is increased, which
implies that an integral time scale 7, exists for o (¢). The requirements for averag-
ing time 7" with 7' >> 7, can then be expressed in terms of o—%, the variance of the
measured time mean & about the expected ensemble mean, and afx, the ensemble
variance of a. From Lumley and Panofsky (1964), we have

20217,
a%:—a%—g. (7.1)

For averaging times 7" >> T,, 0% becomes negligible. We can now specify an
acceptable level of error oz /@ (say €) and express the averaging time required to
keep o /@ within that level as

N 2027,

T~ 228 (7.2)

a’e?
In order to use (7.2) to estimate suitable averaging times, we have to replace
the ensemble variance o2 by the more accessible time average variance—a fur-
ther application of the ergodic hypothesis. For typical daytime values of o, =
1ms~ 1,7, = 10s,and @ = 5 m s~! and specifying oz = 0.1 m s~ (i.e,,
€ == 0.02), we get T = 2000 s ~ 30 min, a reasonable averaging time for mean
horizontal winds, corresponding to the passage of two or three of the large con-
vective cells that extend through the depth of the CBL. Lumley and Panofsky
(1964) offer a clear discussion of ergodicity and averaging requirements. Using
the expression (7.2), they show how T increases with the order of the moment,
estimating that it takes roughly five times longer to measure the fourth moment to
the same accuracy as the second moment, assuming 7, is the same for both (here
o represents the higher powers or products of measured variables). The reason
for this is the tendency for o, /@ to increase with the order of the moment. The
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averaging time requirement can also be different for different second moments,
depending on the magnitude of o, /@.

If the averaging period can be increased indefinitely, € can be kept to within
negligible levels. T" ~ 1his, however, about as long as we can extend the averaging
period without encountering nonstationarity in the form of diurnal variations in
surface heat flux and boundary layer depth. With an averaging period this long
we can expect errors on the order of 3.5%, 5%, and 10%-50% for near-surface
ag,,W, and w/w’, respectively (Haugen, 1978).

7.1.2 Choice of sampling rate

Having established a suitable averaging time based on the accuracies we desire in
the results, we turn to the next important consideration: how frequently to sample
the signal. We assume the sampling process itself is virtually instantaneous, that is,
the sensors are at least fast enough to respond to all the frequencies contributing to
the process. (In the boundary layer, this means a high-frequency cutoff somewhere
in the inertial subrange where spectral energy is falling off rapidly.) The conserva-
tive approach would be to sample at a rate commensurate with the frequency
response of the sensors. But this is really not necessary because the accuracy in
our statistics should, under stationary conditions, be a function only of the number
of samples, N.

For equally spaced instantaneous samples with sampling interval At > 7,
the error variance can be expressed in a form similar to (7.1):
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Fic. 7.1 Percentage error in calculated variances and fluxes as functions of the number of
discrete samples used (after Haugen, 1978).
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2
1= (73)
where N = T'/At. As with T in (7.2), we can estimate the number of samples
needed to maintain a given level of confidence in @. Foro, = 1 m s~!, we need
N = 100 to ensure that o5 < 0.1 m s™'. For T' = 2000 s, calculated from (7.2)
for the same set of conditions, this value of N suggests a sampling interval At =
20 s. Here too, it can be shown that the number of samples needed to keep € within
desired limits increases with the order of the moment.

The results of Haugen’s (1978) calculations, summarized in Fig. 7.1, confirm
the dependence of € on N, Using various combinations of 7' (3> 7, ) and At, he
derived empirical curves from field data that show the number of samples for 10%
accuracy in o2, and w6’ to be 200 and in w/w’ to be 750. The implication is that At
can be increased without loss of accuracy as long as T’ is increased proportionally
to maintain N at the same level. Note that we still require the sampling to be near
instantaneous. The accuracy in the moment calculations depends on our ability to
capture, at least occasionally, the peaks and valleys in the signal, as illustrated in
Fig. 7.2. In the frequency domain, the process is explained in terms of spectral
folding (see Section 7.2).

7.2 Spectra and cospectra

Conversion of data collected in the form of equally spaced samples in the time
domain to spectral and cospectral estimates in the frequency domain involves a
series of calculations we refer to as spectrum analysis or Fourier analysis. Several
methods for accomplishing this conversion exist, but the one most widely used
today is the fast Fourier transform (FFT), which accepts data points in groups of
powers of 2 (e.g., N = 2! = 1024) and calculates the Fourier components in
an elegant, time-efficient manner ideally suited to low-level computer assembly
language. [For details on FFT processing see Bendat and Piersol (1971) and
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Fic. 7.2 Time series of w showing how even infrequent (but instantaneous) sampling
(represented by the dots) can capture enough values at the peaks and valleys to approximate
the true variance. The time indicated is Mountain Standard Time (MST).
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Fic. 7.3 Averaging period 7" and its relationship to spectral resolution and to the center
frequency of spectral estimates.

Ramirez (1985).] The choices we make for 7' and At have particular relevance
for FFT analysis because they directly influence the range and resolution of the
spectral information the analysis provides. We discuss below the implications of
those choices.

7.2.1 Choice of record length

For spectrum analysis we usually require record lengths somewhat longer than for
variance calculations because of the clearer definition they promise in the energy
peak and the rolloff on the low-frequency side of the spectrum. The selection of
T automatically establishes the lowest frequency (1/T") we can resolve as well as
the width of each elementary frequency band A f in the spectrum output:

1 1

A =T= Nar

(7.4)
The elementary bands (excluding the first and last, which are only A f /2 wide) are
centered on frequencies 1/7,2/T,3/T ..., (1/2At — 1/T), as shown in Fig. 7.3.
The number of spectral (or cospectral) estimates we obtain from an FFT analysis'
is N/2, which gives us a total bandwidth of 1/2At in our spectral data.

"The FFT yields N/2 estimates that are complex numbers, so there is no loss of information. The squared

magnitudes of the spectral estimates comprise the power spectrum, whereas the phase information is used in forming
the cospectra and quadrature spectra (Appendix 2.1, Chapter 2).
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With spectra (and cospectra) it is easy to determine whether the chosen T
is long enough. A well-defined spectral peak in the fS(f) [or fC(f)] plot and a
rolloff over a decade or so on the low-frequency side are indications of an adequate
T and a reasonably good approach to stationarity. To achieve this for wind and
temperature spectra over most of the ABL requires averaging times of 60-90 min,
which often conflict with nonstationarity caused by diurnal variations. If there is
no evidence of a peak or even a leveling of the spectrum (or cospectrum) at the low
end, the time series should be examined, even plotted out, to determine if T" should
be increased (to include a significant peak that was not originally anticipated) or if
the data need to be filtered (to remove a long-term trend that is masking a real peak
within the existing spectral range). These questions and more will be discussed in
the next section dealing with the preparation of time series for spectrum analysis.

7.2.2 Choice of sampling rate

Here, the bandwidth desired in the calculated spectra and cospectra determines
the rate at which the variables should be sampled. The decision is simple if the
spectrum of the variable has a clearly defined cutoff frequency f.. Shannon’s
sampling theorem tells us that at least two samples per cycle are needed to define
a frequency component in the original signal completely; for this band-limited
signal the sampling interval At should be

1
=35

Sampling at this rate is referred to as “critical sampling.” Sampling more frequently
(At < 1/2f.) yields no additional benefits?, since no useful spectral information
exists between f, and 1/2A¢. Sampling less frequently (At > 1/2f,) yields a
spectral bandwidth inadequate to cover the full range of frequencies contained in
the signal. The spectral information at frequencies above 1/2A¢ is not lost but
folded back into the spectrum in an accordion fold, as shown in Fig. 7.4. This
process is called “aliasing,” since it results in high-frequency components emerging
as low-frequency components within the resolved bandwidth. The frequency fo(=
1/2At) is referred to as the folding frequency or Nyquist frequency.

We rarely find sharp cutoffs in boundary layer turbulence. The inertial sub-
range, however, presents a logical place to establish the cutoff for data acquisition
purposes. There are three benefits:

At

(1.5)

1. Being in a region of rapidly falling spectral energy, the folding is confined
to no more than the first fold and its effects seldom extend below 0.5 f,
(Fig. 7.5).

Note that, in theory, (7.5) applies to an infinite record. With a finite record we must sample more frequently
to properly resolve f.. In practice, this would only be a problem for very short records.
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Fic.7.4 Folding of spectral energy in an aliased spectrum. Frequencies A, B, and C appear
at A, B, and C’ in the resolved spectrum.
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Fic. 7.5 Aliased energy shown raising spectral levels at the Nyquist frequency by a factor
of 2. (Log scales on both axes.)
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2. With the slope of the spectrum known, the true spectrum can be approx-
imated by simple extrapolation. In the absence of any high-frequency
noise, the spectrum at fy is raised by a known factor (~ 2).

3. No significant transport of momentum and heat occurs in this region of
the spectrum. Therefore, a cutoff here is ideal from the point of view of
flux measurements.

The ideal choice for fj is one that would reveal at least two octaves of the
inertial subrange (allowing for aliasing errors) to provide a basis for extrapo-
lation. This implies fy > 4f;, where f;{(~ 2%/z, when M-O scaling applies) is
the low-frequency limit of the inertial subrange and % is the mean wind speed at
height z. This criterion is often stretched for measurements close to the ground. (In
that case, particular care should be taken to minimize aliasing by using methods
discussed in the following section.) The sampling frequency for turbulence data
over reasonably flat terrain is usually set at 10 or 20 Hz depending on whether the
observation height is above or below 5 m.

In selecting the sampling frequency for turbulence sensors, it is wise to
consider where the power line frequency (50 or 60 Hz) would fall within the
spectrum. Since line frequency contamination is present to some extent in most
analog information transmitted over signal cables, it is important to place the
aliased line frequency where it will do the least harm, that is, at f = 0. For
At = 1/10 s, both 50 and 60 Hz frequencies should fold back to f = 0. The
choice of At = 1/20 s, although ideal for the 60-Hz line frequency, would,
however, place the 50-Hz line frequency at f = fy as seen in Fig. 7.6. Hence, the
logical choice for At in countries with 50-Hz line frequency would be 1/25 s in
applications where sampling at 1/10 s is not fast enough.

7.3 Preparing data for spectrum analysis

Measurements in the real atmosphere may not always satisfy our definitions of
stationarity, or the sampling rate may not be fast enough to avoid serious aliasing

0 fo 0 fO
0 10 0 125
20 30 25 375
40 50 50 625
- o
98 70
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F16.7.6 Aliasing of power line frequency for 20- and 25-Hz sampling rates. Line frequen-
cies are given in Hz.
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in the part of the inertial subrange we are able to cover. These deficiencies can
be met through proper intervention before the spectrum analysis. Some of the
techniques most commonly used to minimize their effects are discussed below.

7.3.1 Reduction of aliasing

Since the very act of sampling at discrete intervals causes energy above frequency
Jfo to be aliased back to lower frequencies, any scheme to minimize aliasing has to
be applied very early in the data handling stage. There are two simple approaches;
both depend on low-pass filtering to reduce the energy above f; that is available
for aliasing. Both can be incorporated in the sensor electronics.

1. Analog prefiltering. Before digital conversion, the analog signal is low-
pass filtered with an analog filter whose half-power point is set at fo = 1/2At.
This will reduce the energy at the Nyquist frequency f; by 50%. When this filtered
signal is sampled at interval At, aliasing restores the energy to nearly its true value
at fo (assuming energy only in the first fold counts) and to slightly lower values
in the range 0.5fy < f < f, as shown in Fig. 7.7. The steeper the filter rolloff,
the narrower the frequency band affected. The advantage of this method is that
multiplexing and analog-to-digital (A/D) conversion speeds can be maintained at
a lower rate. The disadvantage is the possibility of additional noise and drift from
low-pass filters inserted ahead of the multiplexer contaminating the data. No filters
are needed, however, if the sensor response drops off naturally to half-power at f,.

Analog
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Fic. 7.7 Analog prefiltering aimed at reducing aliasing and restoring full energy at the
Nyquist frequency. Filtering reduces energy at Nyquist frequency by a factor of 0.5. (Log
scales on both axes.)
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2. Digital prefiltering. When sampling speed is not a limiting factor (but the
digital recording capacity is), it is more convenient to sample the variable at rates
10 to 20 times higher than f, and have the low-pass filtering performed digitally
at the sensor output by constructing nonoverlapping block averages of the time
series. Taking nonoverlapping block averages is equivalent to subjecting the time
series to a moving average filter of width At but using only points At apart. With
the first step, we impose the power transfer function (sin® 7 fAt)/(r f At)? on
the original spectrum; with the second we alias back into the spectrum whatever
energy remains above fy after filtering, as shown in Fig. 7.8.

The block averaging is accomplished by accumulating successive readings
in the output buffer of the sensor (if it has a digital output) or of the local A/D
converter sampling the signal (in the case of analog signals). Note that in this
simple digital prefiltering scheme, aliasing restores only part of the energy lost
through filtering (Fig. 7.8) because of the 60% drop in power at fo. (Aliasing
introduced by the original sampling at the higher rate will not normally affect
the spectrum, unless large noise spikes exist at frequencies that could fold back
into the frequency band between 0 and f;.) The advantage of this approach is its
simplicity. More sophisticated digital filters can be used if recording capacity is
not a limiting factor; the low-pass filtering would then be performed at a later
time, after the experiment.

Digital
Prefiltering
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Aliased -
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Fic. 7.8 Digital prefiltering achieved by computing nonoverlapping block averages with
oversampled data. Energy at the Nyquist frequency is only partially restored because
filtering reduces it by a factor of 0.4. (Log scales on both axes.)
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7.3.2 Trend removal

The presence of a trend in the time series makes the data nonstationary and
therefore less suitable for analysis. We define a trend as any frequency component
with a period longer than the record length 7. In the limit of very long periods (e.g.,
diurnal variation in temperature), the trend may appear to be linear within that
period. Least-squares methods are often used to remove both linear and polynomial
trends. For many applications, digital high-pass filtering is preferred because it is
simpler and better understood. The same digital filter should be applied to all the
variables processed, ensuring uniform low-frequency treatment of the signals.

Trends in the time series produce distortions at the low-frequency end of the
spectrum (Fig. 7.9). This distortion, if large enough, could totally mask the true
maximum in the fS(f) spectrum and replace it with a spectrum that continues
to rise with decreasing f (Fig. 7.10a). Detrending offers no guarantee that the
true shape of the spectrum can be retrieved. The particular detrending method
used often determines the shape of the detrended spectrum and the location of
its maximum (Fig. 7.10b). Trend removal should be performed only if trends are
physically expected or clearly apparent in the time series. Automatic detrending
is not recommended, except for certain variance and flux calculations where the
presence of trends can be highly detrimental (e.g., /@’ with trends likely in u
and 6).

One indication of a linear trend in the time series is an f~! slope at the
low end of the fS(f) versus f plot of the spectrum (Fig. 7.10a) best seen in
temperature spectra. A linear trend would appear as a replicated ramp function in
the Fourier analysis, producing harmonics that decrease in power as f 2, hence
the f~! slope in the fS(f) plot. Autocorrelation plots also announce the presence
of trends (Fig. 7.9). The correlation function fails to drop to zero even at large
lags; trend removal brings it down to zero very quickly.

With trend
J/
= &
2 il

Trend removed With trend
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Fi6. 7.9 Effects of trend on the spectrum (left) and on the autocorrelation function (right).
(Log scales for spectrum axes.)
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No trend

f f

Fic.7.10 (a) Spectrum distortion from trends of varying magnitudes (A-D). (b) Sensitivity
of low-frequency spectrum shape to three hypothetical detrending procedures (I-III). (Log
scales on all axes.)

There are arguments both for and against detrending. Scientists who work
with data from aircraft find it essential to detrend. Others argue that trends, es-
pecially those in w associated with wave motions in stable air (curves A and B,
Fig. 7.10a) are physically significant and should be included in the variance and
flux calculations because they contribute to vertical transport. The undetrended
spectrum should always be available for comparison with the detrended one to
ensure that the detrending process removes only the suspected trend and no more.
Autocorrelation functions and integral time scales calculated from such data can
be particularly misleading because of their strong sensitivity to the detrending
procedures used.

The simplest high-pass filter for detrending is one in which the original time
series x; is differenced from an equally weighted running mean of width 7. The
process can be viewed as a sequence of low-pass, moving-average filtering and
subtraction. The filtered time series ] becomes

’
T, = Xy — Yy,

where y; represents the low-pass filtered time series. The power spectral transfer
function [K(f)]? for this high-pass filter is well known:

[K()) =[1-H(NP, (7.6)
where
_ sinwfrr
H(f)= *an . (7.7)

H(f) is the low-pass filter function. All frequencies with periods longer than 7,
are attenuated when the power spectrum of z; is multiplied by [K (f)].
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Much sharper detrending filters, with less oscillation near f = 1 /7y, can be
constructed using recursive techniques in which the results of successive filtering
operations are fed back to the input terms. The operation involves fewer terms
than the above “boxcar” approach, and the filter characteristics can be tailored to
approximate those of electronic filters (e.g., R-C, Butterworth). McMillen (1988)
describes one that simulates an ideal R-C filter with an easily specified time
constant. With z; and y; representing, as before, the original and low-pass-filtered
time series, respectively, a simple recursive filter can be constructed for which

¥ = ayi—1 + (1 — a)z;, (7.3)
where
a = At/ (7.9)

At is the time interval between data points and 7, is the time constant of the
desired low-pass filter. When At/7, < 1, we have a ~ 1 — (At/7.). The new
time series is ' = {x; — y;), as in the simple moving-average detrending filter.

It is important to point out in this context that departures from the running
mean cannot be used directly for computing the fluxes as we would use departures
from the conventional time average. Running means do not satisfy Reynolds
averaging rules (see Appendix 7.1) so we cannot assume, as we do with simple
deviations from the time average, that

|

Iel = Q_MQ»
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where the underbarred terms represent the running means and the deviations from
them.

Integral time scales 7, calculated from high-pass filtered time series also
need to be treated with caution. This is because the integral to infinity of the
autocorrelation R(&) is zero for any high-pass filtered signal. The form of R(¢),
over the range of time lags we normally use to compute the function, is very
sensitive to 7y, the time constant of the high-pass filter, for 7z < 107, (see
Appendix 7.2). For 74 > 107, the time lag at the 1/e point on the correlation
curve is usually a good estimate of 7,,. At 7y ~ 7, the time lag corresponding
to the first zero-crossing can be taken as an estimate of 7. At 7y < 7, the
correlation curve will be too compromised for any calculation of 7. All these
points are treated in detail in Appendix 7.2.

7.3.3 Tapering the time series

When the sampling duration is too short to satisfy the condition 7' > 7,, a
tapering window is applied to the time series to bring the values down to zero, or
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close to it, at both ends of the sampling period. It minimizes the adverse effect
of finite sampling® on the magnitude of the computed spectrum and improves our
ability to resolve discrete contributions to the spectrum from waves in the signal.

The process of limiting the data to a finite period is equivalent to multiplying
the time series with a rectangular time window of unit height and width 7. In
the frequency domain, this translates to a convolution of the true transform of
the process with the function (sin 7 f1°) / = f1'. Convolution, being a smoothing
operation, smears out details present in the original transform and extends its range
along the frequency axis. The effect on the power spectrum is loss of resolution
and overestimation in regions where the power spectrum is dropping off rapidly,
as in the inertial subrange. The smaller the 7', the wider the lobes of the (sin 7 f 1)
/ 7 fT function and the greater the smearing and overestimation. For a discussion
of the effects of finite sampling on power spectra, see Kaimal et al. (1989).

By multiplying the time series (from which the mean has been removed) with
a tapered window we are, in effect, replacing (sin 7 f7T') / 7 fT with a different
function, one with a slightly wider main lobe but with greatly suppressed side
lobes (the negative and positive oscillations on either side of the main lobe). In
the time domain, the tapering reduces the discontinuity at the boundaries of the
data when viewed as a replicated sequence of the same time series. Kaimal and
Kristensen (1991) tested a number of tapered windows and found the Hamming
window brings the measured spectrum to within 1% of the spectral levels we
might expect from a long enough record. The window has the form

2 N N
w(n)zo.54+0.46cos<%”>,n:~—~-0-~+— (7.10)

2 27

where w(n) is the window function and N is the number of equally spaced data
points in the sample. The taper in the window reduces the variance in the time
series, so the spectrum has to be compensated for that loss by multiplying it
with the ratio of the squares of the areas of the two windows. For the Hamming
window, this ratio is 2.52. (Note that, after windowing, the finite time series may
have acquired a non-zero mean which must be removed before applying the FFT.)
A-striking example of its application is the shipboard measurement of fluxes
in the marine boundary layer through the “inertial-dissipation” method (Fairall et
al., 1990), where it is necessary to compute the dissipation rates of turbulent kinetic
energy, temperature variance, and humidity variance from very short samples of
data (T' ~ 7,). Use of the Hamming filter on samples of the order of seconds
yields dependable inertial-subrange spectral intensities for the flux extimates.

*In earlier discussions of the effects of finite sampling (e.g., Pasquill and Smith, 1983) the process is
treated as being analogous to high-pass filtering with a spectral transfer function [1 — H( £)?], where H(f) =
(sinw fT) /7 fT; the actual transfer function is more complicated (Kaimal et al., 1989) and approaches the above
function only as T' — oo.
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Other windows tested by Kaimal and Kristensen (1991) fared less well. The
Hanning (cosine squared), Gaussian, and Bartlett (triangle) windows performed
almost as well as the Hamming window, but the Poisson (exponential) and the
25% cosine taper windows were clearly unacceptable. [See Harris (1978) for
definitions of above windows.] The last two caused overestimations approaching
50%, about the same as reported for the untapered (rectangular) window. Clearly,
the commonly used cosine taper is not recommended for very short samples.

The other important benefit to be derived from tapering is the reduction in
“side-band leakage” (the leakage of energy to neighboring frequencies through
the side lobes in the convolving function), which is especially bad with the
(sin 7 fT) / = fT function. Spurious spikes could appear in the spectrum that may
be difficult or impossible to distinguish from spikes representing discrete waves.
Finnigan et al. (1984) successfully used a Hamming window to identify gravity
waves in their studies of wave-turbulence interactions.

7.3.4 Addition of zeros

When the time series available falls short of the length required for the spectrum
analysis program on hand (power of 2, if an FFT is used), it is common practice
to add zeros to the data sequence to make up the required number of points. This
procedure, referred to as “padding”, should be approached with caution because
the consequences of improper application can be severe. The addition of zeros
reduces the spectral estimates by a factor (N — N, ) /N, where N, is the number of
zeros added and N is the total number of points including the zeros. The spectral
estimates should be corrected for this reduction. We can assume that the spectral
estimates are diminished uniformly across the bandwidth as long as N, < N/3. It
is essential that means and trends be removed from the time series before adding
Zeros.

7.3.5 Block averaging

When the number of data points in the period selected for analysis is too long for
a designated spectrum analysis program, it is customary to block average the time
series in unweighted, nonoverlapping blocks to reduce the original time series to
the number of points desired. Such compression of data enables us to examine
the low-frequency behavior in spectra and cospectra quickly. (FFT programs that
can handle an entire hour of data, 36,000 data points for instance, in one pass
certainly exist, but the computing time needed to produce spectra and cospectra
with all the points would be longer and the data handling more cumbersome.)
The block averaging introduces some attenuation at the high-frequency end (see
Section 7.1), but the loss is easily restored in the spectral output. A good reason
for block averaging is to keep aliasing under control.
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Fic. 7.11 (a) Scatter in the unsmoothed high-frequency spectral estimates. (b) Scatter

reduced by smoothing with a frequency window that expands in width with frequency.
(Log scales on all axes.)
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7.4 Processing spectral data

The raw spectral density estimates derived from spectrum analysis programs, such
as the FFT, are too numerous and too ragged to be of direct use to meteorologists.*
Atmospheric turbulence covers a spectral range of five decades; this is best rep-
resented on a logarithmic scale not a linear one. The spectral density estimates
generated by the digital programs, however, appear at equally spaced intervals
(Af = 1/T) on the frequency scale (Fig. 7.3). On a logarithmic scale this spac-
ing results in excessive crowding and large scatter of spectral estimates at the
high-frequency end, as illustrated in Fig. 7.11a. Some form of frequency smooth-
ing is needed to extract a representative spectral curve from the estimates. Spectra
derived through separate computations covering different segments of the desired
spectral bandwidth are easier to splice if they are properly smoothed.

7.4.1 Frequency smoothing

An effective smoothing procedure for boundary layer work is one in which the
averaging interval keeps expanding with frequency f. If m is the number of
estimates in each nonoverlapping block, m is systematically increased as a function

4The power spectral estimates obtained directly from the FFT program (which when summed
equal the variance of the original time series) have to be divided by Af(= 1/T = 1/NAt) to get
them in the form of spectral densities S(f) used in the spectral plots. S(f) has units of variance per
A f, and the area under that curve equals the variance. The frequency-weighted spectrum fS(f), on
the other hand, has units of variance, since multiplication by f(= {Af, where ¢ = 1,2,3,...N/2)
removes the A f dependence.
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of frequency (roughly exponentially) to yield about seven to eight estimates per
decade, as in Fig. 7.11b. Each smoothed estimate (of width mA f) is assigned to
the center frequency of the band. In practice the first few estimates are accepted
as they are; then m is increased in steps 3, 5, 7, and so on, until the density of
smoothed estimates per decade reaches seven (or eight). The expected power law
in the inertial subrange can only be tested dependably after such smoothing.

Other types of frequency smoothing are sometimes applied to spectral data. A
three-point Hanning window (weighted 1/4, 1/2, 1/4) is one of many recommended
in earlier treatises on the subject (Blackman and Tukey, 1958). Filtering the spectral
estimates with such fixed bandwidth windows may provide the smoothing needed
in many engineering applications where the spectral range of interest is often
narrow, but is not particularly useful for boundary layer work because it still
causes crowding of estimates at the high-frequency end.

7.4.2 Spectral splicing

When dealing with a very long time series (N > 2!9), it is advisable to split the
record into two sets:

1. A set of 7 short records each with N/r data points
2. Aseries made up of N/r nonoverlapping block averages (r point averages)
of the original time series

The former yields a bandwidth r/N At to 1/2A¢ and the latter 1/NAt to 1/2rAt
(Fig. 7.12). They overlap over the range r /N At to 1/2r At which, on a log scale,
corresponds to a frequency ratio of N/2r2. [For the Kansas spectra, Kaimal et
al. (1972) had At = 1/20s, T = 3600s, N = 72,000, and r = 16 with an
N/2r? = 136, which corresponds to an overlap of more than two decades. With

(@

Trend in
time series

| | |
1/NAt  r/NAt 1/2rAt  1/2At 1/NAt  r/NAt 1/rAt 1/2At
f f

Fic.7.12 (a) Splicing spectra from the shortened and the block-averaged time series in the
absence of significant trends in the data. (b) Effect of trend in the time series that precludes
matching in the regions of overlap. (Log scales on all axes.)

(b)

£S6)

Overlap
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this choice of parameters, the same 4096-point FFT routine was used for both the
high-end and the low-end spectral computations.]

The r successive spectra from the short records are first averaged to pro-
duce a single high-frequency spectrum. This “incoherent averaging” within each
frequency band produces a spectrum that is very smooth. By comparison, the
low-frequency spectrum will typically have more scatter. Figure 7.12a illustrates
how the two usually combine. The match in the region of overlap is often very
good so the analyst can decide where to drop the estimates from one spectrum
and start with the other. If there is a mismatch, as in Fig. 7.12b, it is invariably the
result of a long-term trend in the data. When that occurs, either the data should be
detrended or the run discarded as unsatisfactory.

Unacceptably high noise levels at the high-frequency end may also be grounds
for rejecting the spectrum. They usually appear as a large rise in the spectrum,
approaching an fT! slope, stretching over a decade or more at the high end, where
the spectrum should be falling off (Fig. 7.13). This type of noise can be traced to
one of the following:

e Sensor noise rising above signal levels as the signal drops below the
sensor’s noise threshold

o Sporadic spikes in the signal from radio frequency interference, a faulty
cable, or mistriggering in the sensor (e.g., sonic anemometer or thermome-

ter)
l !
&
o
o -
D
N(I)
£
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|
0.
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f (H2)

Fic. 7.13 High-frequency distortions arising typically from spikes in a sonic anemometer
w signal and white noise in a platinum wire thermometer. (Log scales on both axes.)
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Their effects on spectra are illustrated in Fig. 7.13. The noise threshold effect is
usually observed in platinum-wire fast-response thermometer spectra when the
temperature fS(f) levels drop to 10~% °C? or lower. The noise spectrum has the
characteristics of white noise: flat in the S(f) versus f plot, f*! slope in the
FS{f) versus f plot (Fig. 7.13). This noise is often accepted as inevitable. Spikes,
on the other hand, cannot be ignored, unless they are isolated and infrequent, as
their effect can extend to all frequencies. Their contribution to the high end of the
spectrum can cause it to exceed in magnitude the energy in the true turbulence
peak. Corrective action (adjustments and repairs) should be taken to prevent the
spikes from contaminating the signal.

In the context of spectral splicing we have to consider the possible implica-
tions of deriving the high-frequency portion of the spectrum by averaging spectra
from relatively short segments of the time series. The overestimation predicted
by Kaimal et al. (1989), discussed earlier, has negligible effect on the spectral
estimates in most applications unless we choose the duration 7" of those segments
to be smaller than the period of the spectral peak (7,,,). In the Kansas data analysis
T was 3.75 min with 7,,, typically 3—4 s for daytime w spectra. In Kaimal et al.’s
(1989) study, the effects of finite sampling became apparent only when 7" dropped
below about 107,,.

7.5 Archiving strategies

In field experiments of limited duration, raw data can be easily stored on digital
magnetic tapes and played back as needed for analysis. Different strategies are
needed for data collection over extended periods. In an operation similar to the
Boulder Atmospheric Observatory where data collection is continuous, it is im-
perative that a system of archival and retrieval be worked out so the information
is standardized and accessible to future users (Kaimal and Gaynor, 1983).

At the BAO, slow-response channels are sampled once a second and fast-
response channels 10 times a second. A schematic of the operations at the BAO
is shown in Fig. 7.14. In the fast response sonic anemometer channels, aliasing
is minimized through digital prefiltering (20-point block average); in the fast-
response platinum-wire temperature channels the natural rolloff from thermal
conduction losses provides the needed high-frequency attenuation. Three types of
data are prepared by the data acquisition computer at the BAO site for transmission
to the central computer in Boulder, 25 km away:

e 10-s averaged values of readings on all channels, fast and slow

¢ 10-s grab samples (last data point in each 10-s block) of all fast-response
channels

o Frequency-smoothed spectral estimates (35 estimates) over the frequency
range 0.01-5 Hz, updated every 20 min
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Fic. 7.14 Schematic of data acquisition and processing at the Boulder Atmospheric Ob-
servatory (BAO).

The on-site computer also generates partial sums of fast-response data and
summaries of slow-response data for presentation of profiles, variances, fluxes,
Obukhov lengths, and so on, at the end of each 20-min archiving period.

The 10-s averaged data are saved for future reconstruction of time plots and
for filling in the low-frequency end of the spectra (0-0.05 Hz) as discussed in
the section above. The 10-s grab samples are the “decimated” data points needed
for recomputing fluxes, variances, and third moments over periods longer than 20
min. They are also useful for detecting the presence of noise in the original signal,
which may not show up in plots of the 10-s averaged data.

Each 20-min spectrum is an average of ten 2-min (1024 point) FFT spectra.
The choice of 20 min as the basic archiving block was arbitrary, selected as a
compromise between the need for stability in the statistics and the need to track
mesoscale variations in the boundary layer. Frequency smoothing is performed
over blocks of increasing width, as discussed in Section 7.4. To fill in the low-
frequency end of the spectrum, a 512-point FFT program is used on the 10-s
averaged data with the option of adding zeros when the number of data points
available falls short of 512. (Even combining four 20-min periods, the time series
will be 32 points short.) How well this scheme fits in with spectral shapes in stable
and unstable air can be seen in Fig. 7.15.

The partial sums generated in real time for the calculation of data summaries at
the end of each 20-min period significantly reduces the processing time at the end.
Individual variables and their products (e.g., w, 6, F, ﬁ, w@) are accumulated in
separate registers as they are sampled. At the end of the 20-min period, variances
and fluxes are generated by simple subtractions:

w? = uw? — (w)?, (7.11)
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Fic. 7.15 Scheme for compressing turbulence data: high-frequency information stored as
smoothed spectral estimates, low-frequency information as time series.

7= 2 — (§)?, (7.12)

w0 = wl - wA. (7.13)

In deriving (7.11) and (7.12) we assume that w'@ = wh = 0, which is valid
if w= W+ w' and § = 6 + ¢'. The same principle can be used for more
complicated calculations involving coordinate transformation of the horizontal
velocity measurements to the longitudinal (u) and lateral (v) components. If .,
and v, are horizontal wind components (right-handed) measured along the probe
axes and wy, is the measured vertical component, we should be able to compute
the variances and fluxes in single operations immediately following ingest of the
last data point in that averaging period in order to have them ready for display
before the start of the next period. The algebraic operations involved are

w? = I:u2

2 — (ﬂ‘m)z} cos? 6, + [E - (i)’m)z] sin®6,

+ 2 [umvm - Emﬁm] sin 97'COS 07“7

(7.14)

5 NG 2 — . T . 2
v?2 =2 cos® 0, — 21,0y, sin 8, cos 8, + uZ, sin” 6, (7.15)
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VW = [Un W, — U W] €08 O + [T W ~ UmnWin] sin by, (7'16)
VW' = Uy Wim COS O — Uyy Wiy, Sin B, (7.17)
W = [@ — E%:] sin 8, cos 0, + Uy, Upm cOs 20, (7.18)
where the angle of rotation (counterclockwise) is
6, = tan™"! (@) (7.19)
Um

Similar expressions can be derived for a full three-dimensional coordinate rotation
if a tilt correction for sloping terrain or for an incorrectly mounted sensor makes
it necessary. In the above transformation we assumed W,, = 0.

7.6 Special symbols

fe cutoff frequency

fi low-frequency limit of the inertial subrange

fo folding (Nyquist) frequency

n number of data points

N number of data points in period T

N, number of zeros added for padding

T factor by which number of data points is reduced

At sampling interval

T averaging time

Um, Um, Wy, measured wind components along instrument axes

w(n) window function, function of n

Tiy Ui time series of variables z and y

a(t) any time series

0, azimuth rotation angle

Pa(€) autocorrelation function of «

Te time constant for recursive low-pass filter

TH time constant for high-pass filter

TL cutoff period for boxcar low-pass filter
Appendix 7.1 Reynolds averaging and running mean filters

In standard operations of turbulence analysis, such as the derivation of flow equations or
the computation of eddy fluxes, the averaging operator (denoted by an overbar) is assumed
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to separate the mean and fluctuating parts of a variable according to certain rules. These
are known as the Reynolds averaging conditions and may be summarized as follows:

1. All primed (fluctuating) quantities must average to zero (w’ = 0).
2. The correlations between primed and averaged quantities must vanish (w8 = 0).
3. The average of an average must be equal to the same average (w = w).

4. Differentiation in space and time commutes with the averaging operations

ow _dw | Ow _ 0w
8r; Oz = Ot ot

For example, when computing fluxes by the eddy correlation method, we usually write
w6 = wh — wh, (7.20)

neglecting the terms w’0 and WH'. These terms are, by definition, zero if the overbar
represents a true Reynolds average. In fact, disappearance of these terms can be used as a
test of its validity for the data being used.

Only ensemble averages can be expected to obey the Reynolds averaging rules pre-
cisely, but in practice we usually use time averages, making the ergodic hypothesis that they
are equal to ensemble averages. (If the time series is not statistically stationary over relevant
time scales, this assumption must be made cautiously.) In many situations, a running-mean
low-pass filter is applied to the time series to approximate the “background” variations; the
filtered time series is then subtracted from the original signal (i.e., the original is high-pass
filtered) to derive the fluctuating components. We should point out that the terms w’f and
w #' do not necessarily vanish (underbar denotes running-mean quantities) because w’ and
¢’ may not have zero means and @ and @ have spectral energy spread over finite bandwidths.
Thus, the spectra of w’ and 8, for example, can be expected to overlap in the region where the
high-pass and low-pass filters also overlap (Fig. 7.16). As a result, we can assume w8 = 0
only if a spectral gap exists in either w or @ in the region where the two filters overlap.
The same comments apply to the computation of variances, since, by the same argument,
w'w and @8 cannot be expected to vanish. These considerations are important if moments
computed in this way are used in budget calculations that are based on equations derived
by Reynolds averaging.

Appendix 7.2 High-pass filtering and integral time scales

In Section 7.4 we discussed the use of digital high-pass filtering to remove low-frequency
trends in the data and its consequences for the estimation of integral time scales To,. These
consequences arise because the procedure has the effect of forcing the spectrum at zero
frequency S, (0) to zero, causing 75 to be zero, if the standard definition of the integral
time scale is used (Appendix 2.1). Here we will examine how high-pass filtering affects the
autocovariance function and through it the integral time scale.

For illustration, we use an example provided by Leif Kristensen (personal communi-
cation), which starts with a near-realistic spectrum for variable «

N To0d 1
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Fic.7.16 Overlap of w’ and 6 spectra resulting from overlap in the transfer functions for
the running mean high-pass and low-pass filters.

(For convenience, we retain the two-sided spectral convention used in Appendix 2.1.) Its
autocovariance R, (£) has the simple exponential form

Ra(8) = / So(w)e™de
= gle 1t/ Ta (7.22)

and an integral time scale, by our standard definition,

o3,

i/Ra(g)dg: /e“f'/fadgzn. (7.23)
0 0

At w = 0, the spectrum reduces to the form derived in Appendix 2.1:

2
To0;

Sa(0) = =

(7.24)



278 ATMOSPHERIC BOUNDARY LAYER FLOWS

We now apply a first-order high-pass filter with time constant 7 and a power transfer
function (w7s)?/{l 4+ (w7r)?] that ensures zero contribution at w = 0. The filtered
spectrum will be

. T.02 1 (wrn)?
Su = & . , 7.25
[ (W)]ﬁlt. p !:1 + (wr];)z} {1 T (wrn)? (7.25)
and the corresponding autocovariance function becomes
2

THO o - T — o
[Ra(@)] 1y, = 7o (Tae™ /™ = mae™ /7). (7.26)

o H

2

= (1~ g/ T)e T for 7 =Ta. 7.27)

The effect of filtering on the autocorrelation function pq (€) (the normalized autoco-
variance function) is shown in Fig. 7.17 for different ratios of 717 /74:0.1, 1.0, 10, and oo.
The effect of high-pass filtering is to introduce a negative lobe (visible, at least, in the first
two curves), large enough to make the integral to infinity equal zero. For 747 /7o = 1, the
zero crossing occurs at £ = 7,,. For 7y /7, < 1, the zero crossing is shifted closer to the
origin and for 7y /7o > 1, farther away from £/7, = 1.

For 71 /To > 10, the zero crossing occurs outside the plot, at some distant £ and
pa(€) is only slightly altered in the range we usually observe. Fortunately, this is the case in
most applications, for otherwise the experimenter would be collecting highly compromised
data.

The shapes of the correlation functions will, no doubt, vary with the type of filter
chosen, but the above exercise does offer some useful insights on high-pass filtering.

1. It tells us roughly how far 7z has to be separated from 7, to ensure that important
turbulence information is not lost along with the unwanted trend. Note that at 75 /7o, = 1,

1.0
. 05 —
“a
] 1/e
o0 = Ty/Ta
0.1 1.0 10
| | |

0 0.5 10 15 20
§/Ta

Fic. 7.17 Effect of high-pass filtering on the autocorrelation function for various ratios of
filter time constant to integral time scale (from Leif Kristensen, personal communication).
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the filter half-power point (f = 1/277x) corresponds approximately to the frequency
where the fS(f) spectrum peaks [which roughly equals 1/277;, as shown in (2.82),
Appendix 2.3]. So, a filter with 75 /7, > 10 would preserve much of the energy at the
spectral peak and the frequencies above.

2. Designing a high-pass filter for a given application requires prior knowledge of the
magnitude of 7, or where fS(f) might peak: The relationships in Chapter 2 could serve
as a guide because the collected data may be too contaminated by the trend to provide that
information. The experimenter, by choosing 7 in this manner, runs the risk of excluding
from consideration conditions that deviate significantly from the norm. (The choice of
record length T can be limiting in the same way.)

3. Practical alternatives to obtaining 7, by integrating p. (£) to infinity are needed
because it is, first, impossible to implement with real data and, second, of questionable
value, given the theoretical expectation of 7, = O for filtered data. One approach is to
choose the value of £ at which p (&) = 1/e =~ 3.7 (e = 2.72 being the base for natural
logarithms), which, for an exponential autocorrelation function, is precisely 7, as pointed
out in Chapter 2. Another alternative is to integrate to the first zero crossing or to the point
where p, (&) is very close to zero. Both these methods will systematically underestimate
7., seriously so if 7y /7, is much less than 10.

The concept of the Eulerian integral time scale, or length scale, is intimately related
to the question of ergodicity—whether time averages converge to constant values as the
averaging time approaches infinity. As £ increases, an ergodic variable not only becomes
uncorrelated with itself, it also becomes statistically independent of itself. The integral
time scale is a measure of the time for which a(t) “remembers” itself. At &€ > T, it
approaches statistical independence. A well-designed high-pass filter would preserve the
scales of motion that contribute to this decorrelation and remove only those that interfere
with it. As a final caution, note that analyses such as those involved in the estimate of errors
in moments from finite time averages (Section 7.3) are based on the standard definition of
the integral time scale.
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