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SPECTRA AND COSPECTRA OVER
FLAT UNIFORM TERRAIN

Turbulent flows like those in the atmospheric boundary layer can be thought of as
a superposition of eddies—coherent patterns of velocity, vorticity, and pressure—
spread over a wide range of sizes. These eddies interact continuously with the
mean flow, from which they derive their energy, and also with each other. The
large “energy-containing” eddies, which contain most of the kinetic energy and are
responsible for most of the transport in the turbulence, arise through instabilities
in the background flow. The random forcing that provokes these instabilities
is provided by the existing turbulence. This is the process represented in the
production terms of the turbulent kinetic energy equation (1.59) in Chapter 1.

The energy-containing eddies themselves are also subject to instabilities,
which in their case are provoked by other eddies. This imposes upon them a finite
lifetime before they too break up into yet smaller eddies. This process is repeated
at all scales until the eddies become sufficiently small that viscosity can affect
them directly and convert their kinetic energy to internal energy (heat). The action
of viscosity is captured in the dissipation term of the turbulent kinetic energy
equation.

The second-moment budget equations presented in Chapter 1, of which (1.59)
is one example, describe the summed behavior of all the eddies in the turbulent
flow. To understand the conversion of mean kinetic energy into turbulent kinetic
energy in the large eddies, the handing down of this energy to eddies of smaller
and smaller scale in an “eddy cascade” process, and its ultimate conversion to
heat by viscosity, we must isolate the different scales of turbulent motion and
separately observe their behavior. Taking Fourier spectra and cospectra of the
turbulence offers a convenient way of doing this. The spectral representation
associates with each scale of motion the amount of kinetic energy, variance, or
eddy flux it contributes to the whole and provides a new and invaluable perspective
on boundary layer structure.

The spectrum of boundary layer fluctuations covers a range of more than five
decades: millimeters to kilometers in spatial scales and fractions of a second to
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hours in temporal scales. The field experiments of the last two decades confirm
that spectral representations in the wavenumber or frequency domain follow sim-
ilarity laws much like the time-averaged statistics discussed in Chapter 1. When
nondimensionalized with the appropriate scaling parameters (u., Tk, w«, and 8, ),
the spectral and cospectral forms reduce to a set of universal curves that are func-
tions only of z/L in the surface layer and 2/ z; in the convective mixed layer. The
existence of such order in the spectral domain is indeed gratifying to the boundary
layer meteorologist. On a practical level, it provides engineers and modelers with
the equations they need for a range of applications, from design of structures to
air pollution predictions. In the ABL, the experimenter can use that information
to determine the frequency requirements for sensors operating at a given height
or, conversely, to adjust the observing height to suit the response characteristics
of available sensors.

This chapter assumes familiarity with the general principles of the application
of Fourier transforms to random processes. The essential formulas are presented
in Appendix 2.1.

2.1 Spectral characteristics of boundary layer turbulence

The turbulent eddies we observe in the boundary layer are spatially extensive
structures, and, ideally, their analysis requires information from many points in
space. Such measurements are becoming increasingly available from aircraft and
remote sensors, but the greater part of the data available to the micrometeorol-
ogist is still derived from point measurements in space as a function of time.
To convert these temporal measurements into spatially distributed data, we com-
monly adopt Taylor’s frozen turbulence hypothesis, which assumes that eddies
change imperceptibly as they are convected by the mean wind % past an in situ
sensor (Appendix 2.2). This assumption works best in the surface layer and worst
in the high-intensity turbulence of a plant canopy or in the mixed layer. (In the
recirculating flow behind a hill, it does not work at all.)

With two sensors a distance r apart, we can form the two-point covariance
tensor R;; (x,r) that provides the fundamental description of spatial structure in
the turbulence

Rij(x, 1) = uj(x)u)(x + ). (2.1)

The Fourier transform of R;;(x,r) converts that covariance to a two-point
spectrum tensor E;;(x,k), where & represents the wavenumber vector. F;;(x,k)
contains complete information on the distribution of turbulent variance and co-
variance over wavenumber space. Unfortunately, more information on the flow
structure than we usually possess is required to form either £;;(x, &) or R;;(x,r)
and we usually work with simpler and more attainable descriptions.
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In x

Fic.2.1. Schematic of energy spectrum in the atmospheric boundary layer showing distinct
regions of energy production (A) and dissipation (C) and the inertial subrange (B), where
both energy production and dissipation are negligible. A is the integral scale of turbulence
and 7 is the Kolmogorov microscale.

A particularly useful conceptual picture of the distribution of energy in
wavenumber space, if we are dealing with turbulence that is homogeneous in
all directions, is provided by the scalar energy spectrum E(x). F(x) represents
the contribution to the total kinetic energy from Fourier modes with wavenumber
magnitudes between & and k + dk, where ¥ = |k|. For a precise definition of
E(x), see Lumley and Panofsky (1964). E(k) peaks in the energy-containing re-
gion, by definition, and drops to zero at both ends of the spectrum. In its schematic
representation in Fig. (2.1) we identify the three major spectral regions, A, B, and
C, relevant to boundary layer flow.

A The energy-containing range, which contains the bulk of the turbulent
energy and where energy is produced by buoyancy and shear.

B The inertial subrange, where energy is neither produced nor dissipated
but handed down to smaller and smaller scales.

C The dissipation range, where kinetic energy is converted to internal en-

ergy.

The energy-containing and dissipation ranges have their own characteristic length
scales: In the former it is the Eulerian integral length scale A; in the latter, the so-
called Kolmogorov microscale 7). In Fig. 2.1 we show E(x) reaching its maximum
at a wavenumber corresponding roughly to the Eulerian integral length scale!

1We cannot be more precise because E(x) is not easily measured in the atmosphere. Also, there
is no simple relationship between R;; (x,r) and E(x) except in fully isotropic turbulence (Batchelor,
1960), where the spectrum can be shown to peak at v/7/A, close enough for our approximation of
1/A.
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{x ~ 1/A). With a single sensor and the use of Taylor’s hypothesis, we are
constrained to define that integral length scale in terms of its components A, A,
and A,,, derived from the integral time scales 7.,, 7,,, and 7, available from our
measurements of u, v, and w. These integral time scales actually represent the
time scales over which the turbulence remains correlated (Fig. 2.2).

Taking A, as an example we can write

Au = ul, :ﬂ/pu( /u, UI t+§) df’ (22)
0 0

where p,,(€) is the autocorrelation function as defined above, £ the time lag with
respect to time ¢ (Fig. 2.2), and T the mean wind velocity. If p,, (§) is an exponential
function, the integral time scale is the value of £ at p,,(£) = 1 /e =~ 0.37(e ~ 2.72,
the base for natural logarithms). For a discussion of autocorrelation functions and
integral time scales, see Appendix 7.2 in Chapter 7.

In the dissipation range the scaling length 7 is given by

1/4
A\ Y
n=\— )
€
where v is the kinematic viscosity of air and ¢ is the dissipation rate of turbulent

kinetic energy. Whereas A,, varies typically from 10 to 500 m, 7 is of the order of
0.001 m.

1.0

pulé)

1/e

% &§—

Fic. 2.2. Autocorrelation function and its relation to the integral time scale 7,,. The l/e
point on the curve is usually a good approximation of the integral time scale even when the
correlation function is not strictly exponential. [The area under the rectangle should equal
the area under p,(£).]



36 ATMOSPHERIC BOUNDARY LAYER FLOWS

In the inertial subrange, energy is neither produced nor dissipated, and the
transfer of energy from the energy-containing to the dissipation range is controlled
entirely by e, the rate at which energy is converted to heat in the dissipation range.
Here, the form of the spectrum can be deduced from purely dimensional arguments
(Kolmogorov, 1941).

Adopting Taylor’s hypothesis implies a natural relationship between wave-
numbers and frequencies. All our observations are henceforth defined in terms of
the streamwise wavenumber ) (subscript 1 for component in the streamwise di-
rection), which corresponds to 27 /A, where A is the wavelength approximated by
u/ f, f being the cyclic frequency. The one-dimensional spectra Fy, (), Fy,(k1),
and F, (k1) of the three wind velocity components (available to us through spec-
trum analysis of measurements from fixed sensors) have forms somewhat different
from E(x) but are predictable nevertheless in both the inertial subrange and the
energy-containing region.

2.2 Inertial subrange

Kolmogorov, who first conceived the idea of an inertial subrange separating the
energy-containing and dissipation ranges, argued from dimensional considerations
that E(x) in this region should be proportional to ¢2/35~>/3 (Kolmogorov, 1941).
Here the « spectrum, in its familiar one-dimensional form, becomes

Fulki) = ek, (2.3)

where « is the Kolmogorov constant with a value estimated between 0.5 and
0.6. This is the well-known —5/3 power law for the inertial subrange. Theoretical
arguments suggest that turbulence is isotropic in this range. Isotropy implies that
the velocity field is independent of rotation and reflection about the spatial axes.
Even though isotropy does not apply to the energy-containing eddies, we can
assume that the small-scale (A < A,,) structure is effectively isotropic. This local
isotropy is important for the derivation of small-scale turbulence statistics. (Local
in this context refers to wavenumber space not physical space.) If local isotropy
exists in the inertial subrange, we have the following relationship among the u, v,
and w spectra:

Fy(k1) = Fyl(r1) = (4/3)Fy(x), (2.4)

which is illustrated in Fig. 2.3. In this log-log representation of the spectra, power
laws appear as constant slopes and ratios as fixed separations. The spectra for v
and w are placed higher than u in the inertial subrange, where they all fali off as
HI_S/ 3. Another consequence of local isotropy is the vanishing of all correlations
between velocity components and between the velocity components and scalars;
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Fic.. 2.3. Idealized velocity spectra presented in log-log coordinates showing -5/3 slope
in the inertial subrange and the 4/3 ratio between the transverse and streamwise velocity
components.

this implies there can be no turbulent fluxes in the inertial subrange. The three
conditions: —5/3 power law, 4/3 ratio between transverse and longitudinal veloc-
ity components, and vanishing (or very low) cospectral levels are used as a test for
the existence of an inertial subrange. [The ability to reach well into this region of
the spectrum through the use of sonic anemometers (Chapter 6) to confirm these
inertial subrange properties was critical to later development of universal forms
for ABL spectra.] The —5/3 power law extends approximately to wavenumber
k1 = 0.1p~! (Dubovikov and Tatarskii, 1987), above which it begins to fall off
sharply with increasing x;.

Corrsin (1951) proposed an inertial subrange form for the temperature spec-
trum that appears to be valid for other scalars such as humidity:

Fo(k1) = Bre " P Ngr3, (2.5)

where Ny is the dissipation rate for half the temperature variance and 3 is a
universal constant with a value about 0.8 (Kaimal et al., 1972). [Note that at
high wavenumbers approaching the dissipation range, the temperature spectrum
exhibits a “bump” due to straining effects on the temperature eddies (Hill, 1978)
not observed in the velocity spectra.)

2.3 Energy-containing range

The spectral forms in the energy-containing range tend to be different for each
variable, since the integral scales they respond to are different. Yet they all seem
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to behave in a consistent manner when plotted in dimensionless similarity coor-
dinates.

Implicit in the development of spectral forms in this range is the assumption
that a spectral gap exists, separating boundary layer turbulence from external
fluctuations. Fortunately for the meteorologist, a spectral gap of sorts can often
be found in the CBL at a frequency f between 0.001 and 0.0001 Hz, between the
convection-driven boundary layer scales and the synoptic scales (Van der Hoven,
1957). This end of the spectrum, however, is susceptible to contamination from
long-term trends present in the data. These may be caused by gravity waves,
diurnal variation, synoptically induced changes, or simply drift in the sensor. In
the absence of such trends in the record, F'(k) is seen to level off to a constant
value as k; — 0, a consequence of the one-dimensional representation of the
three-dimensional turbulence spectrum (see Appendix 2.3). Identifying energy
peaks in this type of spectral plot is difficult. For a more realistic representation
of peaks and valleys in the distribution of turbulent energy, meteorologists use the
wavenumber-weighted form &, F' (k1) of the spectrum. In Fig. 2.4 we see 1 F(k1)
for the u component peaking at x; ~ 1/A,, while falling off as ;"' on the low
side and /ﬁfz/ ? on the high side.

The low-frequency spectrum can usually be approximated by one of two
analytic forms:

H]Fa(lﬂ) _ A(Kfl/K'lm)

= 2.
o 1+ B(k1/61m )73 26)

F( 1), K1 F(K1)

K1

Fic. 2.4. Log-log representations of the frequency-weighted and unweighted power spec-
tral densities. We show both plots in the same graph even though the two spectra have
different dimensions (variance and variance/unit frequency interval) to compare their be-
havior as a function of x;.
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or

k1 Fo (k1) C(k1/Kim)

0',21 N [1 + D(Iil/lﬂm)]s/3 (2.7)

where o = u, v, w,or6d; A, B, C,and D are adjustable constants, and the subscript
m denotes «; at the spectral peak. Equation (2.6) fits unstable w spectra and all
the stable spectra. Equation (2.7) fits the unstable u, v, and € spectra slightly better
than (2.6).

This wavenumber-weighted spectrum is also referred to as a logarithmic
spectrum since it represents the variance per unit logarithmic wavenumber interval.
Its units are those of variance (e.g., m? s~2) instead of variance per wavenumber
interval Ak (as in the unweighted spectrum). Yet, when plotted on alog-log scale,
power relationships appear as straight lines as with the unweighted spectrum, a
distinct advantage when dealing with atmospheric spectra. The log-log plot is,
however, not area-preserving since

oo

o0
/Fa (k1) dry = /mFa d(lnky).
0

0

For an equal area spectrum, k| F,, (%) should be plotted on a linear scale and &,
on a log scale, but power laws will not be straight lines on that plot.

2.4 Conversion from wavenumber to frequency scales

Although spectral theories are formulated in wavenumber space, most measure-
ments are performed in frequency space. To convert spatial scales to frequency
scales we invoke Taylor’s hypothesis, x; = 27 f /%, where f is the cyclic fre-
quency as defined earlier.

Taking the v spectrum as an example, we have

Fu(ki)dry = 0% = [ S.(f)df. (2.8)
/ /

We use a different symbol to represent the frequency spectrum. If 1 = 27 f /4,
we have

r, (2” ) = $.(/), (2.9)

U (7

or

k1 Fu (k1) = £Su(f). (2.10)
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It can be shown that the relationship in (2.10) holds for any form of f, includ-
ing the nondimensional frequency n(= fz/%), used in surface layer work. Thus,
k1 B, (k1) fSu(f), and nS,(n) all represent the same numerical value, allowing
us considerable freedom in choosing frequency scales for the abscissa. For exam-
ple, fS(f) can be plotted as a function of «,, f, or n, without any conversion of
anits.

2.5 Surface layer spectra

Following conventions established for M-O scaling, we use u, and 7T} for nondi-
mensionalizing velocity and temperature spectra in the surface layer. The appro-
priate dimensionless frequency scale for representing spectrawould ben = f2/7,
which is the ratio of height z to wavelength A. We also recall the dimensionless
form for ¢ introduced in Chapter 1:

hze (2.11)

d)e = TUE’
which, according to similarity theory, should be a function only of z/L.
We start with the inertial subrange v spectrum expressed in the framework

of surface layer similarity,

fS“(f) . 3] 62/322/3 fZ -2/3
w2 (2n)22 ( w2 ) (E)

(03] v¢2/3 i_% 2 (2.12)
er)2 % G '

I

Denoting the dimensionless frequency fz/u by n and using values oy = 0.55 and
k = 0.4 (see Appendix 2.4), we have (Kaimal et al., 1972)

S,
f_§f> =03n"2? (2.13)
2 42/3
usPe
When plotted on a log-log scale, the inertial subrange spectra collapse to a
single straight line with a —2 /3 slope. All the variability in the ordinate is absorbed

in (])Z/ 7 We have from Chapter 1 the functional form for qbf/ >

, 14+ 0.5|z/L1?3,  2/L <0
2/3 s
Pe {(1 +52/0)3,  2JL>0 (2.14)

The dimensionless spectra for the remaining velocity components and tem-
perature can similarly be expressed as

£Su(f)
u? </)§/3

= 0.4n~%3, (2.15)
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fSuw(f)

_ 04n—2, (2.16)
w2l

_2f§9(f_)1/3 = 0430723, 2.17)

T2pNpe

For the temperature spectrum in (2.17) we assumed J; = 0.8. In Chapter 1
we defined the similarity function for Ny as

kzN,
on =" Tg, (2.18)

Also, in the temperature variance budget, we found a local balance between
the production and destruction of temperature variance (Ny ~ —w'6¢’96/0z),
which suggests that ¢ =~ ¢,. Hence (2.17) can be expressed in terms of ¢, as

~ 0.43n7%/3, (2.19)

With the velocity and temperature spectra anchored to the inertial subrange
formulations of (2.13), (2.15), (2.16), and (2.17), we can now examine the rest of
the spectrum to see if it will collapse into a narrow band (as in the inertial subrange)
or progress in some orderly fashion as a function of z/L. The plots for the four
variables from the Kansas experiment (Kaimal et al., 1972) are given in Figs. 2.5~
2.8. Of the four, the w spectrum exhibits the most systematic variation with z/L;

1 | T l |

u spectrum
B excluded region
(2]
oW ]
N K
=
=
=
% _

0.01 | | l
0.001 0.01 01 10 10 100

n=fz/u

Fic. 2.5. Normalized surface layer u spectrum shown varying with z/ L.
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Fic. 2.6. Normalized surface layer v spectrum shown varying with z/ L.

only in the range —0.3 > z/L > —2 (shown as a hatched area in Fig. 2.7) does
the spectrum exhibit an insensitivity to z/ L. This happens because the normalized
spectral peak n.,,, stops shifting to lower frequencies with increasing z/ L (see Fig.
2.9), an indication that the peak wavelength A, scales only with z. The u, v, and 8
stable spectra also progress systematically, but their unstable spectra spread over a

10 T | | ]

w spectrum

2/3
£

¢

2
*

fS,(f/u

0.01 | l |
0.001 0.01 01 10 10 700

n=fz/u

FiG. 2.7. Normalized surface layer w spectrum shown varying with z/L.
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Fic. 2.8. Normalized surface layer § spectrum shown varying with z/ L.

larger area (hatched); in u and v, an “excluded” region (crosshatched) can be seen
separating the stable and unstable spectra. The limiting curves for stability regimes
approaching neutral from both sides are indicated by notations z/L = 0+ and 0—
in the figures. Clearly, the unstable « and v spectra do not follow M-O similarity,
and since no measurements of the boundary layer depth z; were made in Kansas,
it was not known at the time that their A,,,’s scaled with z;. Later, the Minnesota
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Fic. 2.9. Nondimensionalized frequency at spectral maxima shown as functions of z/L.
For u, v, and 6, the curves are discontinuous at z/L = 0 and therefore valid only to z/L =
0+, the neutral limit on the stable side.
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experiment (Kaimal et al., 1976) and the laboratory work of Willis and Deardorff
(1974) revealed )\, to be approximately 1.5z;. The wavelength at the spectral
peak A, is a length scale of greater importance to boundary layer meteorologists
than the integral length scale A since it is representative of the size of the eddies
with the most energy. In Fig. 2.9, A, is presented in its dimensionless form z/ A,
or n,,. On the stable side, we find n,, for all variables increasing rapidly with
z/L. On the unstable side, only n,, for w decreases systematically with —z/L,
approaching its free-convection limit of n,,, = 0.17 at z > —L. (The unstable §
spectral peaks tend to be less predictable than the w peaks.)

The behavior of (), in the surface layer and in the layer immediately
above may be expressed as follows:

2055 —038z/L))~", 0<z<-L
_ 2.20
(Am ) { 5.9z, ~L <2z<0.1z (2.20)
2(0.55 + z/L)7!, 0<z<L
Do) = {zL(0.45z FLID)Y, L<z<2L (2.21)
L 2> 2L

The free-convection form for (A, ), leads to the familiar approximation A, ~ z
used in the lower boundary layer, where (A, ), is typically six to seven times
larger than A,,. The tendency for (A, ), to become independent of z as z exceeds
2L on the stable side is consistent with Wyngaard and Coté’s (1972) “z-less
stratification” concept mentioned in Chapter 1.

The stable spectra exhibit a common form when normalized by their variances
and plotted against the dimensionless frequency f/ fo; fo is the value of f where
the extrapolated inertial subrange meets the fS,(f)/o% = 1 line (see Fig. 2.10).
The spectra for u, v, w, and 8 conform to the shape (Kaimal, 1973)

fSalf) _ 01641/
o2 1+0.164( f/fo)3/’ (2.22)

where o = u, v, w, or 6.

By substituting for fS,(f) from (2.13), (2.15), and (2.16) and assuming
ou/ux = 2.17, 0, /u. = 1.78, and o, /u, = 1.36 from the Kansas stable data,
Moraes (1988) showed

(fo)u = 0.012¢., (2.23)
(fo)v = 0.045¢, (2.24)
(fo)w = 0.094¢.. (2.25)
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Fic. 2.10. Normalized stable surface layer spectrum representing u,v,w, and §. The
abscissa is normalized by the frequency where the inertial subrange slope intercepts the
FS(f) = 1line, as shown in the figure.

The frequency f is also related to the integral time scale T, of the variable
« since the low-frequency behavior of (2.22) is controlled by T, (see Appendix
2.3).

The forms for u, v, and w most commonly used in engineering applications
are the neutral Kansas spectra (Kaimal et al., 1972) shown in Fig. 2.11 with minor

adjustments to provide the expected 4/3 ratio in the inertial subrange. They can be
represented by

FSJf)  102n

w2 (1+433n)537 (2.26)
[Sulf) 17n

2 (149507 2.27)
FSo(f)  2In

w2 (1+45.305/3) 228)

2.6 Mixed layer spectra

In the mixed layer, which comprises the upper 9/10 of the CBL, we find M-O
similarity being replaced by a different scaling law: with 2; replacing —L, w,
replacing u., and 8, replacing T, as we saw in Chapter 1. Since none of the new
scaling parameters varies with height, we expect the spectra also to be invariant
with height. In this new framework, A, ¢, and the magnitude of the fS(f) peak
will remain constant with height changing only from run to run in response to
changes in (w’6), and z;. This is indeed the case for u, v, and w spectra, as seen
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FiG. 2.11, Normalized neutral (z/L = 0+) spectra for u, v, and w in the surface layer.
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Fic. 2.12. Normalized mixed layer u, v, and w spectra. The two curves define the envelopes
of spectra that fall within the z/z; range indicated.
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in their idealized representations in Fig. 2.12. Note that in the energy-containing
range, w follows mixed layer similarity only down to 0.1z;, whereas v and v
follow it almost all the way down.

The inertial subrange spectral form for u reduces to

I5uf) _ {( o Mgﬂ (fﬁ)_m,

w;

wherew, = [(g/T)(w'0")92]"/? and ¢ = ¢/(g/0)(w' )0, the ratio of dissipation
rate to buoyant production rate near the surface. Representing fz;/@ by a new

dimensionless frequency n; and assuming oy = 0.55, we can write (Kaimal et al.,
1976)

fSu(f)

2/3
w%we/

fSu(f)

2/3
u&?ﬁe/

= 0.16m;"?, (2.29)

= 0.21n;"?, (2.30)

% = 0.21n; "> 2.31)
w* we

1. should have a value between 0.4 and 0.5 in the mixed layer if we assume
negligible wind shear and a linear heat flux profile in the layer. The Minnesota data
show v, ranging from 0.5 to 0.7, perhaps because of larger than expected shear
production rates in some runs (Kaimal et al., 1976). Note that ¢, is identically the
dimensionless dissipation rate €z; /w? shown in Fig. 1.10.

The spectral peaks for u, v, and w are approximated as follows:

Om)u = Am)o = 1.52;, 001z <2<z (2.32)

5.9z, —L <2<0.1z

(A )w = { 1.82;(1 — e~*#/% — 0.0003e%4/%), 0.1z < z < 2. (2.33)
The mixed layer form for (A, )y, shown in Fig. 2.13, was derived by
Caughey and Palmer (1979) from a combined plot of data from the Minnesota
and Ashchurch experiments. The mixed layer (A, )y does not show a consistent
pattern because the temperature fluctuations are generally small above the surface
layer and easily overwhelmed by the effects of entrainment and the diurnal trend
in the temperature. The profile of o3 presented in Chapter 1 shows the variance
decreasing to a minimum at about 0.62; and rising to its near-surface value at z;,
a clear demonstration of the influence of entrainment in the temperature statistics.
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Fic. 2.13. Variation of the vertical velocity peak wavelength with height.

~ The evolution of u,v,w, and  spectra with height in the ABL is shown
schematically in Fig. 2.14. The w and v spectra appear flattened and stretched
out in the surface layer as they adjust to conform to the mixed layer spectral
forms of Fig. 2.12 in the energy-containing range and to the constraints of (2.13)
and (2.15) in the inertial subrange. These spectra do not show much variation
with height, except in the inertial subrange where the energy drops sharply with
height in conformance with (2.14). The w spectrum, on the other hand, gains
steadily in intensity as its peak moves down the frequency scale, consistent with
the formulation in (2.20), and approaches the mixed layer form of Fig. 2.12 at
z=0.2z,.
Two different approaches have been proposed to model this behavior of the
u and v spectra. Kaimal (1978) used a simple interpolation formula linking the
analytic form for the mixed layer spectrum

ISu(f) 5/3
s ni(1+3.10)%) (2.34)
to the inertial subrange forms of (2.29), (2.30), and (2.31). Hgjstrup (1982) treated

the u and v specira as the sum of two spectra—a low-frequency spectrum scaling
with z; and a high-frequency spectrum scaling with z:
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Fic. 2.14. Schematic representation of the evolution of spectra for velocity (left frames)
and temperature (right frames) with height in the convective boundary layer. The thin
reference line in the temperature plots is the spectrum of the diurnal trend.

fSulf) 0.5n; 2\’ L 1om 235
ul (1 +22027) | \IL] (1+33n)%/%’ '
£So(f) | 0.95n, 2\ . 17n 236
wl (1 +20)%)] \IL] (149.5n)3/3" '

The high-frequency contributions in (2.35) and (2.36) are identical to the Kansas
forms in (2.26) and (2.27).

The modification of the 6 spectrum with height is represented schematically
in Fig. 2.14. The spectrum drops to its lowest point between 0.5z; and 0.7z;,
approaching spectral levels attributable to just the diurnal trend (used as reference
in all the frames in Fig. 2.14); it rises again to its z =~ 0.2z; level at z = z;. We can
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express these shifts in terms of the inertial subrange behavior of the 8 spectrum
which, in the mixed layer framework, becomes

fSe(f) B ~2/3 _ 94~/

v07 ~ (2mpn

(2.37)

9, = (W'6)y/w,, and 7 is the nondimensional equivalent of 12 3 in (2.29)~(2.31)
given by

Nge™ 1/3
* g
In the CBL, «y exhibits a profile with a predictable minimum at about 0.52;. The
Minnesota results (Kaimal et al., 1976) have been approximated by

0.83(z/2)~%3, 2<0.5z
v=4 2.1, 0.52; < 2 < 0.7z (2.39)
6.1(2/2:,‘)3, 0721Z <z S 2.

We attribute the rise in the spectral energy above 0.72; to entrainment of warmer
air from above the capping inversion into the mixed layer.

2.7 Stable outer layer spectra

In the stable outer layer (i.e., h > z > L, where L often ranges from 1/10
to 1/3 of the inversion depth h), the energy due to turbulence in the spectrum
decreases rapidly with height, whereas that of the wave components present does
not. At z = h, only the wave energy remains unless nonlinear processes induce
wave breaking, thereby producing turbulent kinetic energy; at frequencies where
turbulent energy shows a peak at the lower heights, the spectrum is flat and
significantly depressed. (Note that Taylor’s hypothesis does not apply to gravity
waves as they are not transported by the mean wind.) A flat fS(f) spectrum
appears to be characteristic of stable atmospheric flows at Ri ~ 0.2 (Kaimal
and Izumi, 1965; Okamoto and Webb, 1970); it represents a background noise
containing equal energy per octave, analogous to the “pink noise” used in audio
testing.

The evolution of u, v, w, and 8 spectra with height in a hypothetical stable
layer is shown schematically in Fig. 2.15. It is apparent that the vertical variations
of A, cannot be generalized in any way because the stable outer layer is continually
evolving (Caughey et al., 1979) and never reaching equilibrium. The positions and
relative magnitudes of the turbulent peaks and the wave peaks can be expected
to change with time in this layer. Examples of combined wave and turbulence
spectra can be found in Finnigan et al. (1984).
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Fic. 2.15. Schematic representation of the evolution of spectra for velocity (left frames)
and temperature (right frames) with height in the stable boundary layer.

2.8 Structure parameters and spectra

The structure parameter, a widely used indicator of the small-scale structure of
turbulence in wave propagation studies, was originally defined in terms of the
structure function D(r) (Tatarski, 1961), where

Do(r) = [a(z) — ale + )2 = C*r?/3. (2.40)

Here, C2 is the structure parameter, ¢ any variable (usually u, 8, or g), and r the
distance separating two measurements of « along the x axis. It can be shown that
C? is related to the one-dimensional spectrum of « through the relationship

202

_ o —5/3 2. —5/3
Fo(k1) = 3T(=1/3) Kk, T ~0.25Ck, 7, (2.41)
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where I" is the gamma function, provided the distance r is small enough to
be within the range of length scales in the inertial subrange. The parameters,
C%,C3, and C§ for u, 6, and g, respectively, are closely identified with C3,
the structure parameter of the refractive index for acoustic and electromagnetic
waves propagating through the atmosphere. CZ and C#% are related to terms in the
one-dimensional spectral forms for velocity and temperature as follows:

C% = 4a €3 ~ 22673, (2.42)

C2 =48 Ny '3 ~ 32Ny /3, (2.43)

(The form for C’é is the same as for CZ., with the same numerical coefficient and the
appropriate dissipation rate for humidity.) In the surface layer, the dimensionless
forms for C%, and C% may also be expressed in terms of ¢ functions defined
earlier.

C% 23 -
Lo = 22670 = 492, (2.44)
2 ,2/3

T 30k 2 e = 590w6 P, (245)

*

where ¢ = kzNp/u,T? asin Chapter 1. For normalizing our temperature spectra
we earlier assumed ¢ ~ ¢y, but such a substitution in (2.45) would produce
a form asymptotically incompatible with the —4 /3 power law observed for v at
2 < 0.52;. Instead we adopt the empirical form for C% derived directly from data
(Wyngaard et al., 1971), adjusted to provide a good match with v for k¥ = 0.4. The
form for qﬁ/ Y in (2.14), in fact, evolves asymptotically to a constant in the lower
mixed layer. Our formulations for the surface layer are

CL23  [4(1+05|z/L))¥3,  2/L<0 (2.46)
w2 | 4(1 +52/L)3, z/L >0 '
C222% [ 5(1+64|z/L))"*3, 2z/L<0 2.47)
T2 5(1+32/L), z/L >0, ’

shown as functions of z/L in Fig. 2.16. Their mixed layer asymptotic forms are
now

0 2/3
Va5 14, (2.48)
w

*
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Fic. 2.16. Normalized structure parameters for velocity and temperature shown as func-
tions of z/L.

C2.23
—Tg;— = 145k 23 (2/2) ™43 ~ 2.7 (2) )43, (2.49)

The mixed layer profiles for C%, and C2 are presented in Fig. 2.17. Their evo-
Jution with height follows observations reported by Caughey and Paimer (1979).
Of all the asymptotic power laws discussed so far, the form in (2.49) for CZ. shows
the best fit with observations (Kaimal et al., 1976) over a very deep layer of the
convective boundary layer. We do not have comparable asymptotic forms for C
and C% in the stable outer layer.

The functional forms for C3 are the same as for C7 in the surface layer
and in the lower mixed layer. The location of the minimum (Fig. 2.17) would,
however, fluctuate greatly depending on the relative magnitude of moisture flux
from above, through entrainment, and the surface flux (Fairall, 1987).

2.9 Cospectra of turbulence

The cospectra of uw and wé give us valuable information on the averaging times
and frequency responses needed for estimating momentum flux and heat flux
(the fluxes are the integrals of the cospectra from f = 0 to oo as shown in
Appendix 2.1). In the surface layer we have universal curves developed from field
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FiG. 2.17. Vertical profiles of the normalized structure parameters in the convective bound-
ary layer. Note that the shape of the C% profile shown follows that of ~ in (2.39).

measurements (Kaimal et al., 1972) that we can use as guides for establishing the
sampling and sensor response requirements for any given application.

Inertial subrange cospectral forms for uw and w@ proposed by Wyngaard
and Coté (1972) show them falling off as n~7/3 (vanishing more rapidly than the
power spectra of u, w, and 6, consistent with the requirement for isotropy). In this
—7/3 range we would expect the normalized cospectral values to be functions
only of z/L and n. Their logarithmic forms, when non-dimensionalized, become

_fc?—;;('ﬁ x G(z/L)n—MS, (2.50)
—Li%f—) o H(z/Lyn™*", @30

where G(z/L) and H(z/L) are functions of z/L, determined empirically from
experiments. Note that u. T, = —(w’8"),. If we hold G(0) = H(0) = 1, from the
Kansas experiment (Kaimal et al., 1972), we have

 fCunl )

L uwrd 7o 0.05n 743 2.52
2G(z) L) 05n , (2.52)
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fCuwo(f) —4/3
N O T (2.53)
where
e 2<2/L<0
Gz/L) = { 1 +792/L, 0<z/L<2 @254)

1, -2<z/L<0
H(Z/L)_{l+6.4Z/L, 0<2/L<2. (2.55)
The universal curves for the two cospectra are combined in Fig. 2.18. In stable
air the cospectral curves separate systematically according to z/L as the spectra
did in earlier figures, whereas the unstable cospectra crowd into a narrow band
that straddles the neutral cospectrum. For convenience, we take the z/L = 04
curves for uw and w0 as the cospectral forms for the unstable surface layer
(0 < z/L < —2). These curves can be approximated by

SCuulf) 12n
ST = ey (2.56)
I1in
"y <1.
_fCw(f) _ ) +i3-3")7/“ eronEtd (2.57)
T n for n>1.0.

(1 + 3.8n)7/3

b | l | |

cospectrum

0.001 | I I
0.001 0.01 01 1.0 10 100

n=fz/u

Fic. 2.18. Normalized surface layer cospectra of uw and w#, as represented in (2.52) and
(2.53), shown varying with z/L. Note that the w8 cospectrum attains —4/3 behavior at a
bigher frequency than uw.
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We can see from Fig. 2.18 that the two cospectra exhibit similar behavior
atn < 0.5 (i.e., A > 22). They attain —7/3 behavior at different frequencies,
however, about an octave higher in wf than in uw. The extended range in w@
implies that the smaller eddies (A ~ z) transport heat more effectively than
momentum, pointing to the need for higher frequency response in surface layer
measurements of heat flux compared to momentum flux. [On the basis of available
evidence (e.g., Schmitt et al., 1979), we can assume that cospectra of w with scalars
like moisture will exhibit the same shape and characteristics as the w6 cospectrum,
and require sensors that are equally fast for flux measurement.]

The variation of the uw and wé cospectral peaks with z/L is represented by
a single curve in Fig. 2.19. In stable air it follows the same trend observed earlier
in the velocity and temperature spectra (Fig. 2.9). In unstable air there is little, if
any, variation with z/L, as one might surmise from Fig. 2.18.

As we move up into the mixed layer (0.1z; < z < 2;) where the fluxes of
momentum and heat are typically small and even change sign, as in the case of heat
flux (Fig. 1.10), the cospectra become increasingly unpredictable. Often they show
large excursions in both directions with no well-defined envelopes; the fluxes we
measure are merely small differences between upward and downward transport
located in different frequency bands (Kaimal et al., 1976). This is particularly
true for the heat flux cospectra in which the balance shifts gradually with height
until at about 0.82; the downward transport from entrainment begins to dominate.
[Caughey and Kaimal (1977) found evidence of (A, )we approaching 1.5z; in
the lower mixed layer.] Baroclinicity introduces similar uncertainties in stress
cospectra. As a result, we have no universal forms to present for the mixed layer.
Cospectral forms for the outer stable layer also tend to be unpredictable, but this

l ]

20— ]
£ 1 uw,we =
~
N 05F— —]
E
€ 02}— —]

01— —

| |
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z/L

Fic. 2.19. Nondimensionalized frequency at the cospectral maxima shown as a function
of z/L.
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comes as no surprise given the very low levels of turbulence and the evolving
nature of flow in that layer (Caughey et al., 1979).

Appendix 2.1 Fourier spectra: Essential formulas and relationships

A.2.1.1 Fourier transform pair

The three-dimensional energy spectrum E;; (k) and the covariance tensor R;(r) for ho-
mogeneous flow form a Fourier transform pair that is usually expressed as

Eij(s) = (—2:7)3 / / / Rij(r)e ™" dr (2.58a)

Rij(r) = / / / Eij(k)e™" dk. (2.58b)

(For inhomogeneous flow, both the spectrum and the covariance tensor will be functions
of the position vector x as well, as expressed in Section 2.1.)

A.2.1.2 Energy spectrum

The sum of the diagonal components of R;;(0) is twice the turbulent kinetic energy e:
Rii(0) = u? + v2 + w? = 2e. (2.59)

From (2.58b) we have

Ra(0) = /]"/ Bt . 260

which leads to the definition of spectral density as twice the contribution to turbulent kinetic
energy from an element of wavenumber space dk.
The directional information in E;; (k) can be removed by integrating over a spherical

shell in wavenumber space of radius < = |k|. This operation defines the energy spectrum
E(k):

E(r) = % ﬂEii(n) do, (2.61)

where do is an element of the shell and 1/2 is included to ensure that

[ee)

/ E(k) dr = e.

0
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A.2.1.3 One-dimensional covariances and spectra

The most commonly measured covariances are those with separations in the x direction
(r1) since those can be replaced with a time delay (£) using Taylor’s frozen turbulence
hypothesis

Ty = EE
The autocovariance function for variable o (= u, v, or w)
Ro(r) = o'(z) &/ (z +71) (2.62a)

becomes

Ra(§) =a'(t) o/ (t+ ). (2.62b)

The Fourier transforms of R, (r1) and R, (§) are the one-dimensional spectra of o’
in the wavenumber and frequency domains, respectively. These are two-sided spectra we
identify with a A to distinguish them from the one-sided power spectra we deal with in this
chapter and elsewhere:

Fu(ki) = % / Ra(ri)e ™™ dry, (2.63a)
Sa(w) = 517; / Ra(8)e™ ™% dg, (2.63b)

where x1 (= 2 f /u) is the wavenumber component in the streamwise () direction, and
w (= 2x f ) is the angular frequency. Their inverse transforms have the form

R (TI) - /. Fa (/ﬁl)einlrl d:‘Cl, (2643)
Ro(€) = / S (w)e™* dw. (2.64b)

The two spectra are related through Taylor’s hypothesis

Folri) =S, (w). (2.65)
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The type of spectrum we deal with in atmospheric work and in many engineering
applications is the one-sided power spectrum S, (f) such that

/Sa(f) df = o5 = / So(w) dw.
0 "o

Since S, (f) is the positive half of an even function, we are constrained, in the interest of
preserving the variance, to have

So(f) =28,(f) = 4784 (w). (2.66)

Note that the conversion of S, (f) to S, (w) requires multiplication by 27.

A.2.1.4 Eulerian integral length and time scales

The autocovariance functions lead us directly to definitions of the Eulerian integral length
scale A, and time scale 7 :

Ao = ;}/Ru(m)dm Z/Pc«(ﬁ)drla (2.67a)
* 0 0
-1 / Ro(8) dé = / pal€) de, (2.67b)
(4] 0

where p(ri) and p(¢) are the familiar autocorrelation functions in space and time, the
normalized versions of the autocovariance functions in (2.62a) and (2.62b). As in (2.65)
we have, through Taylor’s hypothesis,

Ao = TT,. (2.68)

We define the autocorrelation only for positive r,’s and £’s because the autocovariance is
an even function, and we have

[e )

/ Re(r) dry = % 7 Ra(r1) dr. (2.69)

0 _

The integral scales are related to the one-dimensional spectra through (2.63a,b),
(2.67a,b), (2.66), and (2.69):

1
Ay = (—Tz‘/Ra(T])dh
0
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o

= ET;— 2—]7; / Ra(r)e” ™ dr atk) =0
- %Fa(O) (2.70)
To = —[8(f)ls=0
1
= W[S(w)]wzo. .70

(In Appendix 7.2, Chapter 7, we discuss the consequences of high-pass filtering of data
which essentially removes all energy at zero frequency, forcing A,, and Ty, as defined here,
to zero.)

A.2.1.5 Cross covariances and cross spectra

The cross covariance between variables « and 5 can be expressed as
Rap(ri) = o/(z) - 8'(z +m1). v (2.72)

This function, unlike the autocovariance function, is not an even function. We find, in
general,

o(@)- Bz + ) # o (z+m) - B (z),

and its Fourier transform has both real and imaginary parts. The cross spectrum Crog(%1)
{transform of R,z (r1)] separates into real and imaginary parts:

Crop(r) = Caplir) — iQas(k1)

1
2r

— 00

It

Rag(r)e™ ™ dr). (2.73)

The real part of the cross spectrum is the cospectrum and the imaginary part the quadrature
spectrum. If Rog () is split into its even and odd parts, Eo3(r ) and Oa (1), respectively,

Rag(ri) = Eaa(ri) + Oap(r), (2.74)

it can be shown that Cops(k1) is the Fourier transform of E,s(r)) and Qap(s:) the
transform of Oag(r):

[e’e]

N 1 N _
Caplkr) = 5 / Eag(r)e ™" dry, (2.75a)
Qas(rr) = 2—’7; / Oup(ri)e ™™ dry. (2.75b)

— 00
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Their transforms are, respectively,

Eag(m) = /C‘aza(m)ei”'” dri, (2.76a)
Oap(r) = —i / Qap(ri)e™ ™ dky. (2.76b)

Oap(r1) makes no contribution to R, (0). Hence, from (2.76b) we have
o’ = Rap(0) = / Cop(r1) dra. (2.77)

The one-sided cospectrum Co5( f) used in our discussions is defined such that

[e o]

/ Cop(f)df = .

0

Appendix 2.2 Taylor’s hypothesis in the atmospheric boundary layer

Taylor’s frozen turbulence hypothesis enables us to convert temporal measurements at
a point to spatial patterns in space through the transformation z = wut. Implicit is the
assumption that the turbulent field is frozen in time and transported horizontally past the
observer. Frequency scales become wavenumber scales (k1 = 2w f /u), but the spectra
remain unchanged in their shapes as well as their magnitudes.

‘We know, however, that atmospheric turbulence is neither frozen (it evolves with time)
nor transported precisely at local mean wind speeds. The former fact we ignore because,
typically, the eddy life times are long compared to their travel time across the sensor. The
latter we usually ignore on the basis of correlation studies conducted by early investigators
(Lumley and Panofsky, 1964). The high degree of consistency in the time-averaged statistics
and spectra observed over the years has served to reinforce that practice.

There is, however, ample evidence of eddy convection velocities departing from %,
the local mean wind speed, in the CBL. Wilczak and Businger (1984), in their compre-
hensive study of eddy transport in the convective surface layer (z < 150 m) using tower
measurements, tracked ramplike temperature structures (plumes and thermals) moving at
speeds that varied from ramp to ramp; the larger structures, as a rule, moved faster than the
smaller ones. The large thermals, along with their roots in the surface layer, are convected
at mean mixed layer wind velocities (Davison, 1974), whereas the smaller (and shorter)
plumes, sustained by local sources of warm air near the surface, travel at speeds smaller
than @ (Kaimal, 1974). Taken as a whole, the effective convection velocity, according to
Wilczak and Businger (1984), is between 0.7 and 0.8 times the mixed layer mean wind.
This is consistent with the findings of Kaimal et al. (1982), which showed 150-m tower
u, v, and w spectral peaks shifted to slightly lower (less than one octave) wavenumbers
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compared to their aircraft counterparts. Whereas the aircraft and tower u spectra are virtu-
ally indistinguishable in their shapes and placement, the aircraft v and w spectra showed
more rapid rolloff on the low-frequency side of their peaks compared to tower spectra.

Wind tunnel turbulence (neutral air) shows somewhat different behavior, as pointed
out by Perry and Li (1990). In the near-wall region, they find small eddies traveling with the
local mean wind, whereas larger “attached” eddies moved faster, causing u spectra from
a flying hot-wire anemometer probe to shift slightly to lower frequencies. Within plant
canopies, this behavior is exaggerated. Finnigan (1979), for example, measured the mean
convection velocity of energy-containing eddies in a wheat canopy as 1.8 times the mean
wind speed at canopy top. There is strong evidence of similar behavior over a wide range
of natural and model plant canopies (Raupach et al., 1989). The behavior of large eddies in
plant canopies is discussed in detail in Chapter 3.

Despite these findings, we continue to use % as the convection velocity in most bound-
ary layer applications. This practice will continue as long as investigators find reasonably
good agreement between atmospheric measurements made with moving and stationary
probes.

Appendix 2.3 Low-frequency behavior of one-dimensional spectra

One-dimensional spectra of turbulence, available to us through measurements in the at-
mosphere, give misleading information on the behavior of three-dimensional turbulence
at very low frequencies (Tennekes and Lumley, 1972) because modes of wavenumber «
traveling nearly normal to the #; direction (the direction that defines the one-dimensional
spectrum) appear as very low wavenumber contributions in F,(k1), Fy,(%1), and Fy, (k).
The phenomenon is analogous to measuring wave separation along the direction parallel
to the shoreline when ocean waves are approaching the shoreline almost at right angles to
it. As a result, the one-dimensional spectrum may show finite energy at «; = 0 when, in
fact, there is no energy at zero wavenumber.

Typically, the one-dimensional spectra of u, v, and w level off to a constant value at
the low wavenumber end, as shown in Fig. 2.4. Interestingly enough, it is their intercept at
%1 = 0 that transforms into the integral time scale 7, (or Aq).

For the one-dimensional, one-sided power spectrum of «, the relationship between
this apparent energy at f = 0 and 7, can be derived directly from the relationship

Salf) _

a3

4 / pa(€) cos(2r €) de, (2.78)

where o2 is the variance and p,,(£) the autocorrelation function of o (Fig. 2.2). At f = 0,
we have

[e]

Sa(0) = 405, / pa(€)dé = 405T, (2.79)
0
which is the same as the relationship (2.71) derived from the two-sided spectrum. From

(2.78) and (2.79) we can derive the asymptotic form for the low-frequency behavior of
FSa(f)/ o2 inFig. 2.10:
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FSa(f))on =4Taf. (2.80)
Combining (2.80) and the asymptotic form for (2.22) as f — 0, we get

4T, f = 0.164f / fo

or

1

o= saz

(2.81)

In the spectrum defined by (2.22), the peak occurs at frequency f, ~ 3.8 fo, which leads
us to the relationship

1

(,f'm,)oz >~ m

or
(Am)a = 6.3As. (2.82)

For the hypothetical spectrum with p.(§) = e &/ T (Lumley and Panofsky, 1964), the
peak frequency is exactly 1/277,.

Appendix 2.4 Relationship between Kolmogorov and von Karman
constants
In the formulation of (2.12) we have an implicit relationship between the Kolmogorov

constant «;; and the von Karman constant k that dictates the value of one when the other is
known. In neutrally stable air, where we can assume ¢, = 1, (2.12) reduces to

FSf) | ok ( fz>fz/s

2 o \T
~2/3
_ % (n)Az/s (2.83)
or
a1]€72/3 —34 lifsgz(f)jl n*/? (2.84)

In the inertial subrange, at say n = 4, the Kansas data (Kaimal et al., 1972) yield

[ﬁ%@] =012  for z/L=0.

Then

ark™* = 3.4 %012 x (4)*° ~ 1.0, (2.85)
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We have in (2.85) the rationale for choosing a; = 0.55 to match the now accepted value
of k£ = 0.4 in place of the oy = 0.5,k = 0.35 combination used with the Kansas data.
The formulations of the inertial subrange relationships in (2.13), (2.15), and (2.16) remain
unchanged. The choice of a; = 0.55 does, however, alter the coefficient for the structure
function of velocity in (2.42). The new value is 2.2 instead of the generally used value of
2.0.

Frenzen (1973), who pointed out the connection between the two constants, used a
different formulation. In place of u2 he used the wind profile equivalent (kz 8%/8z)? to
get ank*? = 0.136 in the logarithmic layer under neutral conditions. Frenzen’s present
estimate (personal communication) for o K 3 based on a reexamination of his wind profile
measurements, falls between 0.16 and 0.17. A value of 0.162 is consistent with choosing
o =0.55and £ = 0.4.
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