
Chapter 2
Basic Equations of Atmospheric
Turbulence

Before starting the derivation of the equations for the turbulent fluxes of momentum,
heat and trace gases (Sect. 2.3), we present a short introduction into the basic
equations. These include the equations of mean and turbulent motions, describing
the transport and for energy and matter (Sect. 2.1), and the conservation equation for
the turbulence kinetic energy (Sect. 2.2). To illustrate the importance of microme-
teorological equations and parameterizations for modelling on all scales, different
closure techniques of the turbulent differential equations are described (Sect. 2.1.3).
The more practical user of this book can proceed directly to Sect. 2.3.

2.1 Equation of Motion

2.1.1 Navier-Stokes Equation of Mean Motion

The Navier-Stokes equations describe the balance of all the forces in the earth’ s
atmosphere without consideration of the centrifugal force (Stull 1988; Arya 1999;
Etling 2008; Wyngaard 2010; Hantel 2013):
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where u is the horizontal wind in the x-direction (east); v is the horizontal wind in
the y-direction (north), and w is the vertical wind; p is the atmospheric pressure; f is
the Coriolis parameter; g is the gravity acceleration; q is the air density; m is the
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kinematic viscosity, and r2 is the Laplace operator. From left-to-right, the terms of
the equation are the tendency, the advection, the pressure gradient force, the
Coriolis force, and the (molecular) stress. In a turbulent atmosphere, a turbulent
stress term, the Reynolds stress, must be applied. All the terms in the horizontal
motion equations are of the order of 10−4 − 10−3 m s−2. Under certain condition,
some terms are very small and can be neglected. For example, for steady-state flow,
the tendency can be neglected; above horizontally homogeneous surfaces, the
advection can be neglected; in the centre of high and low pressure areas or for small
scale processes the pressure gradient force can be neglected; at the equator or for
small scale processes the Coriolis force can be neglected, and above the atmo-
spheric boundary layer the stress terms can be neglected.

The three equations of the wind components can be combined applying
Einstein’s summation notation and partial derivatives:
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The shear stress tensor with dynamic viscosity l is given in the form (Stull
1988):
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The generalizations and applications of the Einstein summation operators are
summarized in Table 2.1.

2.1.2 Turbulent Equation of Motion

The modification of the Navier-Stokes equations to include turbulent motions
requires the decomposition of all the variables into a mean part, �x, and a random

Table 2.1 Definitions of Einstein’s summation notation

Running index of the
velocity components

i = 1, 2, 3 j = 1, 2, 3 k = 1, 2, 3

u1 = u u2 = v u3 = w

Length components x1 = x x2 = y x3 = z

Variables No free index:
scalar

One free index:
vector

Two free indexes:
tensor

Kronecker delta-operator
dij

¼ +1, for i = j ¼ 0, for i 6¼ j

Levi-Civita symbol
(alternating unit tensor)
eijk

¼ +1, for
ijk = 123, 231 or
312

¼ −1, for
ijk = 321, 213 or
132

¼ 0, for ijk = all
other combinations
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fluctuating part, x0. This is called the Reynolds’s decomposition (Fig. 2.1), and is
represented by:

x ¼ xþ x0: ð2:4Þ

The application of Reynolds’s decomposition requires some averaging rules for
the turbulent value x0and y0(a represents a constant), which are termed Reynolds’s
postulates:

I x0 ¼ 0
II x y ¼ x yþ x0y0
III �x y ¼ x y
IV a x ¼ ax
V xþ y ¼ xþ y

ð2:5Þ

It is assumed that the postulates are universal, but for special spectral regions or
for intermitted turbulence this is not valid (Bernhardt 1980). The second postulate is
the basis for the determination of turbulent fluxes according to the direct
eddy-covariance method (see Sect. 4.2).

The turbulent equations of motion follow after application of Reynolds’s
decomposition and postulates into Eq. (2.2). It is also assumed (Businger 1982;
Stull 1988), that:

jp0=pj � jq0=qj
jp0=pj � jT 0=Tj
jq0=qj � 1
jT 0=T j � 1

ð2:6Þ

These assumptions are not trivial and need further inspections for individual
cases. A very important simplification results from the Boussinesq-approximation
(Boussinesq 1877), which neglects density fluctuations except for the buoyancy
(gravitation) term. This is because the acceleration of gravity is relatively large in
comparison with the other accelerations in the equation. Therefore, shallow con-
vective conditions (Stull 1988) are permitted. This form of averaging is not without
consequences for the determination of turbulent fluxes (see Sect. 4.2.3). Applying
all these simplifications it follows that:

Fig. 2.1 Schematic
presentation of Reynolds’s
decomposition of the value x
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Completely analogous equations for the heat transfer and the transfer of trace
gases such as water vapour can be derived
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where R and S are source and sink terms respectively, and aT and D are the
molecular heat conduction and diffusion coefficients, respectively.

An important simplification is possible in the atmospheric boundary layer where
only the equations for j = 3, i.e. u3 = w, are important, and steady state conditions
(@=@t ¼ 0) and horizontal homogeneity (@=@x1 ¼ 0; @=@x2 ¼ 0) are assumed. This
assumption is far reaching because all the following applications are valid only
under these conditions. For instance, for all micrometeorological measurements
steady state conditions are implied (see Sect. 4.2.4), and a mostly homogeneous
surface is necessary. Under these assumptions and including the components ug und
vg of the geostrophic wind velocity and the angular velocity of the earth’s rotation,
X, the three equations of motion become:
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Equations (2.10) and (2.11) are the basis of the so-called ageostrophic method
for the determination of the components of the shear stress tensor using differences
between the wind velocity in the atmospheric boundary layer and the geostrophic
wind (Lettau 1957; Bernhardt 1970). The practical application of the ageostrophic
method is limited because of baroclinicity, nonsteady-state conditions, and inho-
mogeneities (Schmitz-Peiffer et al. 1987). For example, they can be applied only for
the determination of the shear stress at the ground surface using a large number of
aerological observations (Bernhardt 1975).

In addition, the continuity equation in the incompressible form is assumed:
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The gas law with the specific gas constant for dry air RL and the virtual tem-
perature Tv (temperature of the dry air, which has the same density as the moist air)

Tv ¼ T 1þ 0:61 � qð Þ; ð2:14Þ

with the specific humidity q, completes the system of equations:

p ¼ qRL Tv ð2:15Þ

In an analogous way, the equations for heat and trace gas transfer are:
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The influence of the individual terms in the different layers of the atmospheric
boundary layer can be estimated using similarity numbers. These numbers are
dimensionless values describing the relations between characteristic scales of the
forces. Two physical systems are similar if the similarity numbers of both systems
are on the same order. This is imported if atmospheric processes are investigated in
a wind tunnel or water channel.

The ratio of the inertia to the pressure gradient force is called the Euler number

Eu ¼ qV2

DP
; ð2:18Þ

where V is the characteristic velocity, and DP is the characteristic pressure gradient.
The ratio of the inertia force to the Coriolis force is the Rossby number

Ro ¼ V
f Lh

; ð2:19Þ

where Lh is the characteristic large-area horizontal length scale.
The ratio of the inertia force to the molecular stress is the Reynolds number

Re ¼ Lz V
m

; ð2:20Þ

where Lz is the characteristic small-scale vertical length scale.
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The ratio of the buoyancy production or destruction (stratification of the atmo-
sphere) to the shear production of turbulence kinetic energy is the Richardson flux
number (see Sect. 2.3.3). A bulk Richardson number can be defined as

Ri ¼ � g

T

DzT Dz

Dzuð Þ2 ; ð2:21Þ

where DzT is the characteristic temperature gradient, and Dzu is the characteristic
vertical wind gradient (see Sect. 2.3.2).

For heights above 10 m the temperature must be replaced by the potential
temperature h. Due to the decrease of atmospheric pressure with height it follows
from Poisson’s equation (Kraus 2004; Salby 2012):

h ¼ T
1000
p

� �RL=cp

ð2:22Þ

Replacing potential by air temperature is only valid for heights below 10 m
resulting in errors of less than 0.1 K.

The relevant processes in the atmospheric boundary layer can be identified using
dimensional analysis and the similarity numbers. Using the logarithms of the
similarity numbers the relevant processes can be identified for logarithms smaller
than zero (Bernhardt 1972) as listed in Table 2.2. From the structure of the
atmospheric boundary layer presented in Fig. 1.4, this is a logical organization.

It can be shown that the pressure gradient force is important only in the upper
boundary layer. Molecular viscosity is only relevant in the viscous and molecular
sub-layer. The effect of the Coriolis force can be neglected in the flux gradient
relationships (see Sect. 2.3) in the surface layer, but not in general (see Sect. 2.4).
On the other hand, the turbulent stress is relevant in the whole boundary layer.

In the dynamical and viscous sub-layers, the stratification does not play a role.
Under these circumstances, it is possible that the vertical gradients are nearly zero:

Table 2.2 Order of the similarity numbers in the layers of the atmospheric boundary layer (bold:
Processes characterized by the similarity numbers are relevant)

Layer Height lg Ro lg Eu lg Re lg |Ri|

Upper layer *1000 m <0 <0 >0
Re > 108

> −2

Surface layer *10 … 50 m *0 <0 >0
Re * 107 … 108

> −2

Dynamical sub-layer *1 m >0 *0 >0
Re < 107

* −2

Viscous sub-layer *0.01 m >0 >0 ~0 < −2

Molecular or laminar
boundary layer

*0.001 m >0 >0 <0 < −2
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These equations mean that the covariances are constant with height in the surface
layer. An error in this assumption of approximately 10% is typical.

The covariance of the vertical wind velocity, w, and a horizontal wind com-
ponent or a scalar x can be determined by:
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According to the second Reynolds’s postulate (Eq. 2.5, II), in the case of a
negligible vertical wind the total flux is equal to the covariance. This equation is
implemented in the eddy-covariance method, a method to directly measure turbu-
lent fluxes (see Sect. 4.2). The dimensions of the turbulent fluxes of momentum
(expressed as square of the friction velocity), sensible and latent heat, and matter are
in kinematic units m2 s−2, K m s−1, and kg kg−1 m s−1, respectively. For water
vapour flow, the units are hPa m s−1:

u2� ¼ �u0w0;
QH

q � cp ¼ T 0w0;
QE

q � k ¼ q0w0;
Qc

q
¼ c0w0 ð2:25Þ

The equation for the friction velocity is valid only if u is the direction of the
mean wind velocity. This simplification is typically used in micrometeorology and
is equivalent to a coordinate rotation around the z-axis (see Sect. 4.2.3). The
covariance of u′ and w′ is negative except below the crown in a forest (Amiro
1990). For a Cartesian coordinate system that is not aligned with the flow
streamlines the friction velocity is given by:

u� ¼ u0w0� � 2 þ v0w0� � 2h i 1=4
ð2:26Þ

The friction velocity is a generalized velocity, i.e., it is the shear stress divided
by the density

u� ¼
ffiffiffi
s
q

r
: ð2:27Þ
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2.1.3 Closure Techniques

The transition from the equation of motion from mean to turbulent flow gives a
system of differential equations with more unknown parameters than equations. To
solve the system of equations, assumptions have to be made to calculate the
unknown parameters. These assumptions, for example for the covariance terms, are
called closure techniques.

The order of the closure refers to the highest order of the parameters that must be
calculated with the prognostic equations. Therefore, the moments of the next higher
order must be determined (Table 2.3). Simple closure techniques are bulk
approaches (see Sect. 4.1.1). Closer techniques of higher order require extensive
calculations (Table 2.4). The most important approaches are presented here.

2.1.3.1 Local or first-order closure

First-order closure is analogous to molecular diffusion approaches, i.e. an assumed
proportionality between the vertical flux and the vertical gradient of the relevant state
parameter n. In the turbulent case, the proportionality factor is the eddy diffusion
coefficient,K, and the approach is calledK-theory. The gradient will be determined at
the same place where the flux is to be calculated; therefore it is a local closure:

u0in
0 ¼ �K

@n
@z

ð2:28Þ

The product of air density and turbulent diffusion coefficient (Eq. 1.22) is called
“Austausch”-coefficient or exchange coefficient. The turbulent diffusion coefficients

Table 2.3 Characterization of closure techniques (Stull 1988)

Order of
closure

Prognostic
equation for

To be approximate in
the equation

Number of
equations

Number of
unknown
parameters

1st order ui uiuj 3 6

2nd order uiuj uiujuk 6 10

3rd order uiujuk uiujukul 10 15

Table 2.4 Realization of closure techniques

Order of closure Realization

0. order No prognostic equation (bulk and similarity approaches)

½ order Forecast with simple bulk approaches

1. order K-approach (local) Transilient closure (non-local)

1½ order TKE equation with variance terms

2. order Prognostic equation for fluxes

3. order Prognostic equation for triple correlations
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are formed for momentum, sensible heat, water vapour (latent heat), etc. For the
single fluxes in kinematic units, the following relations are used:
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For the determination of the turbulent diffusion coefficients, the mixing length
parameterization is used, which is based on the work of Prandtl (1925). This
approach describes the turbulent diffusion coefficient in terms of geometric and flux
parameters. This is illustrated in the following example for the moisture flux. If an
air parcel moves to a slightly different height, it will have a humidity and velocity
slightly different than its new environment. This change of the environmental
velocity and humidity can be described with gradients (Fig. 2.2):
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The vertical velocity, which is necessary for the movement of the parcel, is
assumed proportional to the horizontal velocity (c: constant factor):
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The water vapour flux and the turbulent diffusion coefficient for evaporation are
then given by
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Fig. 2.2 Schematic view of
the movement of an air parcel
z′ to explain the mixing length
approach
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where l is called the mixing length. The mixing length is usually assumed to be

l ¼ j z; ð2:36Þ

where j is the von-Kármán constant and z is the height above the ground surface.
The value of j is currently taken to be 0.4 (see Sect. 2.3.3).

The turbulent diffusion coefficient of momentum is:
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With Eqs. (2.24) and (2.28), the widely used exchange approach (K-approach)
for neutral stratification in the surface layer is:

Km ¼ j z u� ð2:38Þ

Applications of local closure for the stratified surface layer are discussed in
Sect. 2.3.3. Outside of the surface layer, closure parameterizations for greater
heights in the atmospheric boundary layer are used (see Sect. 2.6.2). The K-theory
approach can be always applied when the exchange process takes place between
direct neighbouring atmospheric layers or turbulence elements. K-theory cannot be
applied in convective boundary layers (i.e. the daytime mixed layer). Also, K-
theory should not be used within high vegetation (see Sect. 3.5) or for very stable
stratification (see Sect. 3.7).

2.1.3.2 Non-local first-order closure

Local scaling approaches are no longer sufficient once larger eddies contribute to
the exchange process, resulting in an overall flux that is greater than the flux due to
the smaller eddies alone. This is e.g. the case for turbulent transport processes in tall
vegetation and convective boundary layers. Possible solutions are given by either
the transilient theory or the spectral diffusion theory.

The transilient theory (Stull 1984) approximates the turbulent exchange process
between adjoining atmospheric layers or boxes, and also admits the exchange
between non-adjoining boxes. The change of a scalar n with time in a box i is given
by a fixed matrix of exchange coefficients, cij between the boxes i and j and the size
of the scalar in the box j:

ni tþDtð Þ ¼
XN
j¼1

cij t;D tð Þnj tð Þ ð2:39Þ
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The matrix of mixing coefficients is called a transilient matrix. The flux in the
k-layer is given by:

w0n0ðkÞ ¼ Dz
Dt

� �Xk
i¼1

XN
j¼1

cij ni � nj
� � ð2:40Þ

Figure 2.3 illustrates the possibilities for mixing between boxes. In principle all
possibilities of mixing can be realized by the definition of the transilient matrix,
which must be parameterized using external parameters such as the wind field or the
radiation (Stull 1988). The difficulties of getting these parameters are the reasons
why this form of the closure is rarely used.

2.1.3.3 Higher order closure

Closures higher than first order are now quite typical. But most of the parameter-
izations are poorly validated against observations. Commonly used, is a closure of
1.5th order. This is a closure using variances, which can be partially determined
with the equation of the turbulence kinetic energy (TKE, see Sect. 2.2). 2nd order
closure approaches use triple correlations (see Table 2.4).

2.2 Equation of the Turbulence Kinetic Energy

The equation of the turbulence kinetic energy, (TKE) in kinematic form is obtained
by multiplication of the Navier-Stokes equation for turbulent flow Eq. (2.7) with
ui’. With the kinetic energy defined as (Stull 1988; Etling 2008; Wyngaard 2010)

Fig. 2.3 Schematic view of
the mixing of eddies from the
central layer (a) and by
superposition of similar
mixing of the three layers in
the centre (b) (Adapted from
Stull 1988, with kind
permission of © Kluwer
Academic Publisher
B. V. Dordrecht 1988,
All rights reserved)
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e ¼ 0:5 u02 þ v02 þw02
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¼ 0:5 u02i ð2:41Þ

it follows:
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Descriptions of the terms in Eq. (2.42), which are in the order of 10−4 m2 s−3,
are given in Table 2.5. The changes of the magnitudes of the terms in Eq. (2.42)
with height in the boundary layer are shown in Fig. 2.4, whereby the terms are
normalized by w3

�z
�1
i (order 6 � 10−3 m2 s−3). In a boundary layer that is strongly

influenced by convective processes, the terms are usually normalized by the
characteristic convective or Deardorff velocity (Deardorff 1970):

w� ¼ g � zi
hv

w0h0v
� �
 �1=3

ð2:43Þ

By application of the Obukhov-length L (see Sect. 2.3.3) it follows

w� � 0; 7u� � zi
L

� �1=3
; ð2:44Þ

while the conditions of free convection are given for �zi=L\� 5. . .10 (Wyngaard
2010).

Table 2.5 Meaning of the terms of the TKE equation

Term Process

I Local TKE storage or tendency

II TKE advection

III Buoyancy production or consumption

IV Product from momentum flux (<0) and wind shear (>0)
mechanical (or shear) production or loss term of turbulent energy

V Turbulent TKE transport

VI Pressure correlation term

VII Energy dissipation
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Convection is the vertical transport or mixing of properties of the air
(horizontal transport: advection). Forced convection results from mechanical
forces (wind field) and inhomogeneities of the ground surface. It occurs for
1 > z/L > −1 and appropriate scaling parameters are u* and T*. In contrast,
free convection is caused by density differences and occurs for z/L < −1, and
the scaling parameter is w*. The fluxes in the case of free convection are
typically not proportional to the local gradient (in the literature this is often
referred to as counter gradient fluxes, Deardorff 1966).

Comparing the magnitudes of the terms of the TKE equation near the surface,
terms I, II, V, and VI can be neglected relative to terms III, IV, and VII. The
resulting equation is:
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This equation can be used in the surface layer to determine the energy dissi-
pation e, i.e., the decay of turbulent eddies into heat:

e ¼ g

hv
w0h0v
� �

� w0u0
@u
@z

ð2:46Þ

buoyancy

dissipation

transport

shear

therms of the TKE budget

Fig. 2.4 Order of the terms of the TKE equation in the atmospheric boundary layer at daytime
(Stull 1988) normalized with w*

3zi
−1 (about 6 	 10−3 m2 s−3) (Adapted from Stull 1988, with kind

permission of © Kluwer Academic Publisher B. V. Dordrecht 1988, All rights reserved)
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2.3 Flux-Gradient Similarity

2.3.1 Profile Equations for Neutral Stratification

In Sect. 2.1.3.1, it was shown that the flux could be determined by the vertical
gradient of the state variable and a diffusion coefficient. These relations are called
flux-gradient similarities. Thus, the turbulent diffusion coefficient for momentum
can be parameterized in a simple way using Eq. (2.38). For the shear stress, it
follows:

s ¼ q Km
@u
@z

ð2:47Þ

As discussed above, the friction velocity Eq. (2.26), is often used instead of the
shear stress.

The turbulent fluxes of momentum, Eq. (2.29), sensible heat, Eq. (2.30), and
latent heat, Eq. (2.31), can be calculated using the turbulent diffusion coefficient for
momentum in the case of neutral stratification, Eq. (2.38), as the profile equations:

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
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w0T 0 ¼ �j � u� �
1
Prt

@T
@ ln z

ð2:49Þ

w0q0 ¼ �j � u� � 1
Sct

@q
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In Eq. (2.48) the friction velocity was defined in a simplified way in comparison
to Eq. (2.26) by using the mean horizontal wind u. This first-order approximation is
possible in the case of small wind fluctuations as shown by (Foken 1990).

Because the diffusion coefficients for momentum, sensible and latent heat are not
identical, the turbulent Prandtl number Prt and the turbulent Schmidt number Sct are
introduced. The turbulent Prandtl number is

Prt ¼ Km

KH
; ð2:51Þ

which is Prt * 0.8 for air (see Table 2.6). This definition is analogous to the
Prandtl number of molecular exchange conditions

Pr ¼ m
mT

; ð2:52Þ

with the thermal diffusion coefficient mT .
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Similarly, for the latent heat flux the Schmidt number

Sc ¼ m
D
; ð2:53Þ

of the molecular diffusion coefficient for water vapour, D, and the turbulent Schmidt
number are applied:

Sct ¼ Km

KE
ð2:54Þ

For the latent heat flux (water vapour flux) and the matter flux the turbulent
diffusion coefficients for heat are applied, even when this is not fully justified. The
turbulent Prandtl- and Schmidt numbers can be determined only by the comparisons
of profile measurements (see Sect. 4.1) and flux measurements with the
eddy-covariance method (see Sect. 4.2) for neutral conditions. Because of the
inaccuracies in these methods the coefficients contain remarkable errors and for
the turbulent Schmidt number the same values as for the turbulent Prandtl number
are applied. Table 2.6 gives an overview of the currently available data.

Transferring the given equations in kinematic units into energetic units requires
multiplication by the air density, which can be determined according to the ideal
gas law and either the specific heat for constant pressure cp (for sensible heat flux)
or the latent heat of evaporation k (for latent heat flux). These values are temper-
ature and pressure dependent (see Appendix A.3):

q ¼ p hPa½ � � 100
RL � Tv kg m�3� 
 ð2:55Þ

cp ¼ 1004:834 J K�1 kg�1
� 
 ð2:56Þ

k ¼ 2500827� 2360 T � 273:15 Kð Þ J kg�1� 
 ð2:57Þ

If the kinematic latent heat flux was based on water vapour pressure data, an
additional correction factor of 0.62198/p (p in hPa) must be applied that accounts
for the conversion into specific humidity in kg kg−1. To achieve an accuracy better
than 1% of the fluxes, the temperature must be determined with an accuracy of 1 K

Table 2.6 Turbulent Prandtl
number according to different
authors

Author Prt
Businger et al. (1971) 0.74

• Correction according to Wieringa (1980) 1.00

• Correction according to Högström (1988) 0.95

Kader and Yaglom (1972) 0.72–0.87

Foken (1990) 0.80

Högström (1996) 0.92 ± 0.03
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and the pressure should be determined as a mean value with the barometric equation
(Supplement 2.1) for the height above sea level. The following transformation
relations are given:

QH ½Wm�2� ¼ cp qw0T 0½Kms�1�

¼ 1004:832
p½hPa� � 100
287:0586 � T w0T 0½Kms�1�

ð2:58Þ

QE½Wm�2� ¼ q kw0q0½kg kg�1 m s�1�

¼ p hPa½ � � 100
287:0586 T

0:62198
p hPa½ � 2500827� 2360 T � 273:15 Kð Þ½ �

� w0e0½hPa m s�1�

ð2:59Þ

Supplement 2.1 Barometric equation
The pressure at some height Z can be calculated from the pressure at sea

level p(Z = 0) and the mean virtual temperature, Tv between sea level and Z,

p Zð Þ ¼ p Z ¼ 0ð Þ e
g0

RL Tv
Z
; ðS2:1Þ

where Tv is given by Eq. (2.14). Z is the geopotential height (Stull 2000), i.e.
the geopotential U normalized with the constant gravity acceleration
g0 = 9.81 m s−2 (Hantel 2013),

Z ¼ U
g0

; ðS2:2Þ

In the lower troposphere, the geopotential height differs only slightly from
the geometric height. Also, depending on the required accuracy the virtual
temperature can be replaced by the actual temperature.

For hydrological applications the latent heat flux is often converted into the
evaporated amount of water with the evaporation equivalent (0.0347 mm d−1 are
equal to 1 Wm−2 as the daily average).

The profile equations Eqs. (2.48)–(2.50) give the opportunity to determine the
fluxes in a simple way using either semi-log paper or similar computer outputs as
shown in Fig. 2.5. Such graphs are helpful for a quick check of the measurement
results or the functioning of the sensors. An overview of applicable humidity units
is given in Supplement 2.2. Relative humidity observations should never be used
for computing latent heat fluxes. When converting relative humidity into other
humidity variables, air temperature observations are needed, which can lead to
cross-correlations between latent and sensible heat fluxes. For heights above 10 m
potential temperature (Eq. 2.22) instead of air temperature must be used.
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Supplement 2.2 Humidity units

Humidity unit Equation

Water vapour pressure: partial pressure of the water vapour in
hPa

e

Relative humidity: ratio of the water vapour pressure and the
water vapor pressure at saturation in %

R ¼ ðe=EÞ 100%

Dew point s: temperature, at which the water vapour pressure
for saturation can be reached in °C

E sð Þ

Water vapour pressure for saturation in with Tetens’ equation
over water (Stull 2000)

E ¼ 6:11 e
17:6294� T�273:16Kð Þ

T�35:86K

Water vapour pressure for saturation with Magnus’s equation
(−45–60 °C over water) according to Sonntag (1990) in hPa

E ¼ 6:112 e 17:62�t
243:12þ t

Water vapour pressure for saturation with Magnus’s equation
(−65–0.01 °C over ice) according to Sonntag (1990) in hPa

E ¼ 6:112 e 22:46�t
272:62þ t

Absolute humidity: mass water vapour per volume moist air in
kg m−3

a ¼ 0:21667 e
T

Specific humidity: mass water vapour per mass moist air in
kg kg−1, can be replaced with sufficient accuracy by the mixing
ratio or visa versa

q ¼ 0:622 e
p�0:378 e

Mixing ratio: mass water vapour per mass dry air in kg kg−1 m ¼ 0:622 e
p�e
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Fig. 2.5 Determination of the friction velocity from the wind profile with a semi-log plot
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2.3.2 Integration of the Profile Equation—Roughness
and Zero-Plane Displacement

The integration of the profile equation for the momentum flux Eq. (2.48) from
height z0 up to height z is

u zð Þ � u z0ð Þ ¼ u zð Þ ¼ u�
j

ln
z
z0
; ð2:60Þ

where z0 is the height of the extrapolated logarithmic wind profile where u(z0) = 0
as illustrated in Fig. 2.6. Thus, z0 is simply an integration constant. Because this
parameter depends on the characteristics of the surface it is called roughness length,
roughness parameter, or roughness height . It varies from 10−3 to 10−6 m for water
and ice, 10−2 m for grassland, and up to 0.2 m for small trees. More values are
given in Table 2.7.

For neutral conditions, the roughness length z0 can be determined by extrapo-
lating the wind profile according to Fig. 2.6 to the point u(z0) = 0. This method is
limited to roughness elements of small vertical extension (at a maximum forests or
settlements with low houses). For more details see Sect. 3.1.1.

For water surfaces, the roughness length z0 is generally parameterized as a
function of the friction velocity. The parameterization by Charnock (1955)

z0 ¼ u2�
81:1 g

ð2:61Þ

10

1

0.1
2 4
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0.01

Z0

-1

Fig. 2.6 Determination of
the roughness length z0 by
extrapolation of the log-linear
wind profile to the point
u(z0) = 0
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is often used in models. However, Eq. (2.61) underestimates z0, for low wind
velocities, because under these circumstances existing capillary waves are very
rough. It is highly recommended to use the relation by Zilitinkevich (1969), which
is a combination of Eq. (2.61) and the relation by Roll (1948) in the form

z0 ¼ c1
m
u�

þ u2�
c2 g

; ð2:62Þ

where the coefficients, c1 and c2 are given in Table 2.8 and plotted in Fig. 2.7. For
high friction velocities, the data given by Zilitinkevich et al. (2002) show slightly
higher roughness-length values in the coastal zone than for the open sea. Because of
the remarkable scatter of experimental data for the determination of the roughness
length (Kitajgorodskij and Volkov 1965), all combinations of both parameterizations
as well the Roll-type for u* < 0.1 m s−1 and the Charnock-type for u* > 0.1 m s−1

are applicable.
The integration of the equations for the sensible and the latent heat flux is

formally identical to those of the momentum flux (Eq. 2.60). The integration
constants are the so-called roughness length for temperature and roughness length
for humidity. At these heights, the temperature and the humidity are assumed to

Table 2.7 Roughness length in m from different sources (Reithmaier et al. 2006, updated)

Surface ESDU
(1972)

Troen and
Lundtang
Petersen
(1989)

Wieringa
(1992)

Fiedler
according to
Hasager and
Jensen (1999)

Davenport
et al.
(2000)

Ice 10−5

Water 10−4 − 10−3

Snow 0.002

Bare soil 0.03 0.004 0.03 0.005

Grassland 0.005–0.02 0.03 0.06 0.08 0.03

Winter
crops
(winter)

0.1 0.09 0.12 0.1

Winter
crops

0.05 0.1 0.18 0.09 0.25

Summer
crops

0.05 0.1 0.18 0.09 0.25

Clearings 0.1 0.35 0.004 0.2

Shrubs 0.2 0.4 0.45 0.3 0.5

Conifer
forest

1–2 0.4 1.6 0.9 1.0

Deciduous
forest

1–2 0.4 1.7 1.2 2.0

Settlement 0.5–2 0.4 0.7 0.5 2.0
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have approximately the same values as at the ground surface. That this cannot be
true was already shown in Fig. 1.5, because near the surface large temperature
gradients occur. Therefore, the roughness lengths for scalars cannot be precisely
determined. Typically, their values are assumed to be equal to 10% of the roughness
length z0 for momentum.

For atmospheric models these roughness lengths are parameterized (see Sect. 5.3)
and used in the following equations

T zð Þ � T z0Tð Þ ¼ Prt T�
j

ln
z
z0T

; ð2:63Þ

Table 2.8 Coefficients for
Eq. (2.62)

Author c1 c2
Roll (1948) 0.48 ∞

Charnock (1955) 0.0 81.1

Zilitinkevich (1969) 0.1 20.8

Brocks and Krügermeier (1970) 0.0 28.5

Foken (1990) 0.48 81.1

Beljaars (1995) 0.11 55.6

Zilitinkevich et al. (2002) 0.1 56 open ocean
32 coastal zone

Foken (1990)

Zilitinkevich
et al. (2002)
open
ocean

Charnock (1955)
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Fig. 2.7 Dependence of the roughness length over water on the friction velocity according to
different authors
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q zð Þ � q z0q
� � ¼ Sct q�

j
ln

z
z0q

; ð2:64Þ

where

T� ¼ �w0T 0

u�
ð2:65Þ

is the temperature scale or friction temperature and

q� ¼ �w0q0

u�
ð2:66Þ

is the humidity scale.
For dense vegetation (grass, grain), the canopy can be considered as a porous

medium. The zero-level for the wind field according to Eq. (2.60) is no longer at the
ground surface but at a distance d above the surface within the plant canopy. At this
level, often called displacement height or zero-plane displacement height d, all
equations given thus far are valid analogues to the case of bare soil (Paeschke
1937). The length scale, which is based on this level, is called the aerodynamic
scale with z’(d) = 0. In contrast, the geometric scale, which is measured from the
ground surface, is z = z′ + d (Fig. 2.8). Because Eq. (2.60) is valid only for the
aerodynamic scale, the expression for low vegetation using the geometric scale as
reference gives:
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Fig. 2.8 Aerodynamic and geometric scale for dense vegetation (d = 1.2 m)
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u zð Þ ¼ u�
j
ln
z� d
z0

ð2:67Þ

Consequently, all profile equations and equations for integral turbulence char-
acteristics, which are used in this and the following chapters, must be modified for
low vegetation by replacing “z” with “z − d”. The roughness length z0 in Eq. (2.67)
is related to the new aerodynamic zero-level and Table 2.7 can be applied.
Sometimes in the literature the denominator is given as z0 − d. In this case z0 is
measured from the ground. High vegetation (forest) and tall buildings require
special considerations (see Sect. 3.1.2).

The log-linear extrapolated plot of the wind profile above a dense plant canopy
with the geometric height as the ordinate cuts the ordinate at u(z0 + d) = 0. Thus, it
is not possible to determine the roughness and displacement heights in a simple
way. Instead, a system of equations must be solved. However, it is possible to use a
value of z0 from Table 2.7 and then calculate d. A simple approximation is also
given by

z0 ¼ 0:1 zB; ð2:68Þ

where zB is the canopy height. Another method is to assume that the displacement
height is about 2/3 of the canopy height. Therefore, with a known value of
z0 + d the roughness length can be determined by:

z0 ¼ z0 þ d½ � � 2
3
zB ð2:69Þ

The determination of the zero-plane displacement for heterogeneous surfaces,
high vegetation and buildings is discussed in Sect. 3.1.2.

2.3.3 Monin-Obukhov’s Similarity Theory

The equations given in Sect. 2.3.1 are strictly speaking only valid in the dynamic
sub-layer in which the influence of thermal stratification can be neglected. Monin
and Obukhov (1954) used dimensional analysis according to Buckingham’s
P-theorem (Supplement 2.3), to extend these equations to the non-neutral (diabatic)
case (Foken 2006a). In this analysis, the dependent parameters in the surface layer
are the height z in m, the friction velocity u* in m s−1, the kinematic heat flux

w0T 0 ¼ QH

q cp
ð2:70Þ

in K m s−1, and the buoyancy parameter g/T in m s−2 K−1. The independent
dimensions are the length in meters, the time in seconds, and the temperature in K
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degrees. The dimensionless parameter that characterizes the processes in the surface
layer is (also called Obukhov number or Obukhov stability parameter)

1 ¼ z=L; ð2:71Þ

where

L ¼ � u3�
j g

T
QH
q�cp

: ð2:72Þ

Supplement 2.3 Buckingham’s P-theorem

Buckingham’s P-theorem (Buckingham 1914; Kantha and Clayson 2000)
states that for n + 1 dependent parameters and k independent dimensions,
there exist exactly n + 1 − k dimensionless parameters which characterize the
process. This can be demonstrated for the free throw of an object
(Kitajgorodskij 1976), where z, u0, g and x are the n + 1 dependent param-
eters corresponding to the dropping height, velocity of the throw, gravity
acceleration, and distance of the impact point. The independent dimensions
are the length in m and the time in s. The benefit of the dimension analysis is
shown stepwise:

• The determination of x = f (z, u0, g) from many single experiments is very
expensive.

• The assumption g = const gives an array of curves for different dropping
heights.

• Using Buckingham’s P-theorem one can determine both dimensionless
values x+ = x/z and z+ = g z u0

2, which gives a direct functional relation
between x+ and z+.

• If you increase the number of dimensions by separation of the length scale
for the horizontal and vertical direction, the process can be described with
only one dimensionless parameter x* = c u0 (z g−1)1/2. With some
experiments it is even possible to determine for the constant c the standard
deviation.

The difficulty in the application of Buckingham’s P-theorem is the
selection of the parameters, the dimensions, and the determination of the
suitable dimensionless parameters. Because of the many influencing param-
eters in meteorology, this theorem is very important.

The characteristic length scale L is called the Obukhov length (Obukhov 1946).
Initially, the notation Monin-Obukhov-length was used, but this is, in the historical
sense, not exact (Businger and Yaglom 1971). The Obukhov length gives a relation
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between dynamic, thermal, and buoyancy processes, and is proportional to the
height of the dynamic sub-layer (Obukhov 1946), but is not identical with it (Monin
and Yaglom 1973, 1975).

Currently (Stull 1988), the Obukhov length is derived from the TKE-equation
Eq. (2.42). A physical interpretation of L was made by Bernhardt (1995), i.e., the
absolute value of the Obukhov length is equal to the height of an air column in
which the production (L < 0) or the loss (L > 0) of TKE by buoyancy forces is
equal to the dynamic production of TKE per volume unit at any height z multiplied
by z.

It is more accurate to define the Obukhov length using the potential temperature.
Furthermore, for buoyancy considerations the content of water vapour is important,
which changes the air density. Therefore, virtual potential temperature hv should be
applied. The Obukhov length is then defined as:

L ¼ � u3�
j g

hv
w0h0v

ð2:73Þ

This is precise, but is not often used because the universal functions, discussed
below, were determined in the lower surface layer and often in dry regions.
Observations made in other regions showed within the accuracy of the measure-
ments no significant differences.

The application of Monin-Obukhov similarity theory on the profile equations
Eqs. (2.46)–(2.48) is done using the so-called universal functions um(1), uH(1) and
uE(1) for the momentum, sensible and latent heat exchange respectively. Therefore,
a new functional dependence on the dimensionless parameter f, is given along with
Eqs. (2.51) and (2.54):

u� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�u0w0

p
¼ jz

um 1ð Þ
@u
@z

¼ j
um 1ð Þ

@u
@ ln z

ð2:74Þ

w0T 0 ¼ � j= Prt u�
uH 1ð Þ

@T
@ ln z

ð2:75Þ

w0q0 ¼ � j=Sct u�
uE 1ð Þ

@q
@ ln z

ð2:76Þ

The universal functions account for the effects of stronger mixing in the unstable
case, which leads to a decrease of the gradient and an increase of the flux. In the
stable case the opposite conditions apply. The universal functions can be approx-
imated by a Taylor series (Monin and Obukhov 1954) with the argument 1:

u 1ð Þ ¼ 1þ b1 1þ b2 1
2 þ � � � ð2:77Þ

56 2 Basic Equations of Atmospheric Turbulence



Based on Obukhov’s (1946) investigations, the so-called O’KEYPS-function
(Kaimal, Elliot, Yamamoto, Panofsky, Sellers) followed from the studies made in
the 1950s and 60s (Panofsky 1963; Businger and Yaglom 1971; Businger 1988):

um 1ð Þ½ �4�c1 � 1 � um 1ð Þ½ �3¼ 1 ð2:78Þ

According to Businger et al. (1971) it follows that c1 � 9 (−2 < f < 0) and that

the form um fð Þ ffi �c1fð Þ�1=3 fulfills the O’KEYPS-equation which applies to the
conditions of free convection. The currently used form of the universal functions
(Fig. 2.9) is numerically only slightly different (Kramm and Herbert 2009):

um 1ð Þ ¼ 1þ c2 � 1ð Þ�1=4; ð2:79Þ

which is called the Businger-Dyer-Pandolfo-relationship (Pandolfo 1966; Businger
1988).

The relationships between the universal functions for momentum and sensible
heat are given by:

uH � u2
m for 1\0

uH � um for 1� 0
ð2:80Þ

Consequently, the influence of stratification in the surface layer on the universal
functions can be described with the stability parameter 1. The universal functions
are generally defined in the range of −1 < 1 < 1. In the stable case (1 > 1) a
height-independent scaling occurs, the so-called z-less scaling (Wyngaard 1973). In
this case, the eddy sizes do not depend on the height above the ground surface but
on the local Obukhov-length (Table 2.9, Fig. 2.9).
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Fig. 2.9 Typical graph of the universal functions for momentum flux (bold line) and sensible and
latent heat flux (fine line); ‘modified’ indicates the function is characterized under the conditions of
z-less-scaling
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Presently the universal functions derived from the Kansas-experiment of 1968
by Businger et al. (1971) and later modified by Högström (1988) are widely used.
Högström (1988) considered important criticisms of the Kansas-experiment, for
example of the wind measurements (Wieringa 1980), and has re-calculated the
von-Kármán constant from j = 0.35 to the presently used value of j = 0.40
(Table 2.10).

The universal functions given in Table 2.10 are recommended for use. In the last
40 years, many universal functions where determined. The most important of these
are given in Appendix A.4. A difficulty in applying the universal functions is the
normalization. The basics were discussed by Yaglom (1977). For applying the
universal functions, one must consider if the turbulent Prandtl number is part of the
universal function, is used in the profile equation, or even included in the Obukhov
length (Skeib 1980). Furthermore, all universal functions must be recalculated for
the updated value of the von-Kármán constant of 0.4 (Högström 1988). It must be
noted that the universal functions by Zilitinkevich and Tschalikov (1968) and Dyer
(1974) are widely used in the Russian and English literature respectively. Also
interesting, is the universal function by Skeib (1980) which is based on the sepa-
ration of the atmospheric boundary layer into a dynamical sub-layer (without
influence of stratification) and a surface layer. In analogy with hydrodynamics,
critical values for the separation of both layers are used. A disadvantage is the
non-continuous function, but the integration gives a physically rational function.

There are only a few papers with results using the universal function for the
water vapor exchange. Therefore, the universal function for the sensible heat flux is

Table 2.9 Determination of the stratification in the surface layer dependent on the dimensionless
parameter 1 and the universal function u(1)

Stratification Remark 1 u(1)

Unstable Free convection, independent
from u�

−1 > 1 No definition

Dependent from u�, T� −1 < 1 < 0 u(1) < 1

Neutral Dependent from u� 1 * 0 u(1) = 1

Stable Dependent from u�, T� 0 < 1 < 0.5…
2

1 < u(1) < 3 … 5

Independent from z 0.5 … 1 < 1 u(1) * const * 4
… 7

Table 2.10 Universal
function according to
Businger et al. (1971),
recalculated by Högström
(1988)

Stratification um(1) uH(1) * uE(1),
Prt = Sct = 1

Unstable (1 − 19.3 1)−1/4 0.95 (1 − 11.6 1)−1/2

Stable 1 + 6.0 1 0.95 + 7.8 1
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used widely for the latent heat flux and the fluxes of trace gases with accordingly
identical numbers for the turbulent Prandtl and Schmidt number.

Applying the universal function in the stable case is difficult. It is already well
known that the universal function in the above form underestimates the turbulent
exchange process. The assumption of a nearly constant universal function, which
also supports the z-less scaling is obvious. The lack of measurements has not
allowed a general applied formulation (Andreas 2002). Handorf et al. (1999) based
on measurements in Antarctica that for f > 0.6 the universal function becomes
constant um * 4. Cheng and Bruntseart (2005) found for f > 0,6 a value of
um * 7 for the CASES-99-experiment.

The uncertainty of the universal functions is similar to those of the turbulent
Prandtl number (Table 2.6), and is also dependent on the accuracy of the mea-
surement methods. Furthermore, the determination of Prt and j for neutral condi-
tions is relevant for the universal function at f = 0. The von-Kármán constant is
presently accepted as j = 0.40 ± 0.01 (Högström 1996). But a slight dependency
on the Rossby and Reynolds numbers was discovered (Oncley et al. 1996), which is
probably a self-correlation effect (Andreas et al. 2004). An overview of values of
the von-Kármán constant appearing in the literature is shown in Table 2.11.
Regarding the universal function, the following accuracies are given by Högström
(1996), where normally the virtual temperature is not applied:

z=Lj j � 0:5: duHj j � 10%
z=Lj j � 0:5: dumj j � 20%
z=L[ 0:5: um; uH ¼ const ?

ð2:81Þ

The discussion of the accuracy of the parameters and functions is still ongoing.
For example, a dependence on the mixed layer height cannot be excluded
(Johansson et al. 2001). This means that processes in the surface layer may be
influenced non-locally by the whole boundary layer.

In addition to the Obukhov number 1, the Richardson number Eq. (2.20) is used
to determine atmospheric stability. The definitions of the gradient, bulk, and flux
Richardson numbers are:

Table 2.11 The von-Kármán
constant according to different
authors (Foken 1990, 2006),
where the value by Högström
(1996) is recommended

Author j

Monin and Obukhov (1954) 0.43

Businger et al. (1971) 0.35

Pruitt et al. (1973) 0.42

Högström (1974) 0.35

Yaglom (1977) 0.40

Kondo and Sato (1982) 0.39

Högström (1985, 1996) 0.40 ± 0.01

Andreas et al. (2004) 0.387 ± 0.004
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Gradient Richardson number:

Ri ¼ � g

T
� @T=@z

@u=@zð Þ2 ð2:82Þ

Bulk Richardson number:

RiB ¼ � g

T

DT Dz

Duð Þ2 ð2:83Þ

Flux Richardson number:

Rf ¼ g

T

w0T 0

w0u0 @u=@zð Þ ð2:84Þ

Analogous to the Obukhov length, the temperature can be replaced by the virtual
potential temperature.

The critical Richardson numbers are Ric = 0.2 and Rfc = 1.0, for which in the
case of stable stratification the turbulent flow changes suddenly to a quasi laminar,
non-turbulent, flow or turbulence becomes intermittent. The conversion of 1 into Ri
is stratification-dependent according to the relations (Businger et al. 1971; Arya
2001):

1 ¼ Ri for Ri\0
1 ¼ Ri

1�5Ri for 0�Ri� 0:2 ¼ Ric
ð2:85Þ

An overview about the ranges of different stability parameters is shown
Table 2.12.

The integration of the profile Eqs. (2.74)–(2.76) using the universal functions in
the form of Eq. (2.79) for the unstable case is not trivial and was first presented by
Paulson (1970). For the wind profile, the integration from z0 to z using the definition
of the roughness length u(z0) = 0 is

uðzÞ � uðz0Þ ¼ uðzÞ ¼ u�
j

ln
z
z0

�
Z

umð1Þ d1


 �
; ð2:86Þ

uðzÞ ¼ u�
j

ln
z
z0

� wmð1Þ

 �

; ð2:87Þ

Table 2.12 Overview about different stability parameters

Stratification Temperature Ri L 1 = z/L

Unstable T(0) > T(z) <0 <0 <0

Neutral T(0) * T(z) *0 ±∞ *0

Stable T(0) < T(z) 0 < Ri < 0.2 = Ric >0 0 < 1 < *1
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where the integral of the universal function, wm(1), is:

wmð1Þ ¼
Zz=L

z0=L

1� umð1Þ½ � d1
1

ð2:88Þ

Accordingly, it follows for the integrated version for the sensible heat flux,
which can also be applied for other scalars:

TðzÞ � Tðz0TÞ ¼ Prt T�
j

ln
z
z0T

�
Z

uhð1Þd1

 �

ð2:89Þ

TðzÞ � Tðz0TÞ ¼ Prt T�
j

ln
z
z0T

� whð1Þ

 �

ð2:90Þ

whð1Þ ¼
Zz=L

z0T=L

1� uhð1Þ½ � d1
1

ð2:91Þ

The integration of the universal function for the momentum and sensible heat
flux for unstable conditions according to Businger et al. (1971) in the form of
Högström (1988) is

wmð1Þ ¼ ln
1þ x2

2

� �
1þ x
2

� �2
" #

� 2 tan�1 xþ p
2

for
z
L
\0; ð2:92Þ

whð1Þ ¼ 2 ln
1þ y
2

� �
for

z
L
\0; ð2:93Þ

with

x ¼ 1� 19:31ð Þ1=4 y ¼ 0:95 1� 11:61ð Þ1=2: ð2:94Þ

It is obvious that the cyclic term in Eq. (2.92) is not physically realistic. But this
term is relatively small and has no remarkable influence on the result. In the stable
case there are very simple solutions for the integrals of the universal functions:

wmð1Þ ¼ � 6
z
L

for
z
L
� 0 ð2:95Þ

whð1Þ ¼ � 7:8
z
L

for
z
L
� 0 ð2:96Þ
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The universal function according to the Businger-Dyer-Pandolfo relation
Eq. (2.79) shows a good asymptotic behaviour for neutral stratification. A further
version for the integration was proposed by Berkowicz and Prahm (1984).

2.3.4 Bowen-Ratio Similarity

The Bowen ratio (Bowen 1926) is defined as the ratio of the sensible to the latent
heat flux:

Bo ¼ QH

QE
ð2:97Þ

Using Eqs. (2.75) and (2.76), and taking the conversion between kinematic and
energetic units into consideration according to Eqs. (2.58) and (2.59) a very simple
relation develops. With the assumption uH(1) * uE(1), for neutral stratification or
restriction to the dynamic sub-layer, Prt * Sct, and replacing the partial derivatives
by finite-differences gives

Bo ¼ cp
k

DT
Dq

¼ cp
k

p
0:622

DT
De

¼ c
DT
De

; ð2:98Þ

where the psychrometric constant is c = 0.667 hPa K−1 for p = 1013.25 hPa and
T = 20 °C.

A special case of the flux-gradient similarity Eq. (2.98), is the so-called
Bowen-ratio similarity. The ratio of the gradients of temperature and humidity
between two heights behaves like the Bowen ratio. This simplification is the basis
of the Bowen-ratio method (see Sect. 4.1.1). It must be noted that the simplifica-
tions used are also limitations of the method.

The generalization of this similarity is

Fx

Fy
� Dx

Dy
; ð2:99Þ

i.e., the ratio of two fluxes is proportional to the ratio of the differences of the
relevant state parameters between two heights.

This equation opens the possibility of determining the flux of an inert gas if the
energy flux is known, if the differences of the trace gas concentrations can be
determined with a high accuracy, and if the above made simplifications can be
accepted. This method was proposed as a modified Bowen-ratio method by
Businger (1986), compare with Sect. 4.1.1.
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2.4 Flux-Variance Similarity

Analogous to the derivation of the TKE equation, Eq. (2.42), the balance equations
for the momentum and sensible heat flux can be derived (Wyngaard et al. 1971a;
Foken et al. 1991):

@w0u0

@t
¼ �w02 @u

@z
� g

T
u0T 0� �� @

@z
u0w02 � 1

q

@ w0p0
� �
@z

� e

II VII

ð2:100Þ

@w0T 0

@t
¼ �w02 @T

@z
� g

T
T 02
� �

� @

@z
T 0w02 � 1

q

@ T 0p0
� �
@z

� NT

III VII

ð2:101Þ

These equations include the standard deviations of the vertical wind component
and the temperature:

rw ¼
ffiffiffiffiffiffiffi
w02

p
und rT ¼

ffiffiffiffiffiffi
T 02

p
ð2:102Þ

For steady state conditions and after estimation of the magnitude of the terms II
and VII in Eq. (2.100) and terms III and VII in Eq. (2.101) it follows for the surface
layer (Wyngaard et al. 1971a; Foken et al. 1991):

rw=u� ffi const: und rT=T� ffi const: ð2:103Þ

These normalized standard deviations are also called integral turbulence char-
acteristics (Tillman 1972), because they integrally characterize the state of turbu-
lence over all frequencies. For the integral turbulence characteristics of the three
wind components, the following values are given (Lumley and Panofsky 1964;
Panofsky and Dutton 1984):

rw=u� ffi 1:25

ru=u� ffi 2:45

rv=u� ffi 1:9

ð2:104Þ

The constancy is only valid for neutral stratification. From similarity relations for
diabatic conditions it follows (Foken et al. 1991):

rw=u� ¼ a umðz=LÞ½ ��0:5 ð2:105Þ

rT=T� ¼ b
z
L
uhðz=LÞ

h i�0:5
: ð2:106Þ
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Many dependencies are reported in the literature for the integral turbulence
characteristics under diabatic conditions (see Appendix A.4). Therefore, for the
integral turbulence characteristics a general form is used for the wind components

ru;v;w=u� ¼ c1 z=Lð Þc2 ; ð2:107Þ

and for temperature and other scalars

rT=T� ¼ c1 z=Lð Þc2 ; ð2:108Þ

where c2 = −1/3 is often applied (Wyngaard 1973). At least for the vertical wind,
there are no significant differences between the available parameterizations. The
most common parameterization by Panofsky et al. (1977) can be applied in the
neutral and unstable case too:

rw=u� ¼ 1:3 1� 2
z
L

� �1=3
ð2:109Þ

Based on these findings, the experimentally verified relationships are given in
Table 2.13.

The integral turbulence characteristics for temperature and other scalars in the
case of neutral stratification are not exact because T* ! 0. In the case of unstable
stratification for wind components and scalars, dependencies on stratification were
found. Thus, some authors (Panofsky et al. 1977; Peltier et al. 1996; Johansson
et al. 2001) reported a dependency on the mixed layer height in the case of strong
unstable stratification. But the difference is relevant only for free convection
(Thomas and Foken 2002). For stable stratification, only a few verified measure-
ments are available. Therefore, the use of the given parameterizations for the
unstable case with the argument |(z − d)/L| is recommended as a first approximation.
For temperature, a slightly modified approach is given in Table 2.13 (Thomas and
Foken 2002).

Based on Rossby similarity (Garratt 1992, see Sect. 2.6.2) some authors
(Yaglom 1979; Tennekes 1982; Högström 1990; Smedman 1991) assumed, at least
in the neutral case, a visible dependency on the Coriolis parameter. The verification

Table 2.13 Integral
turbulence characteristics for
diabatic stratification (Foken
et al. 1991, 1997; Thomas and
Foken 2002)

Parameter z/L c1 c2
rW/u* 0 > z/L > −0.032

−0.032 > z/L
1.3
2.0

0
1/8

ru/u* 0 > z/L > −0.032
−0.032 > z/L

2.7
4.15

0
1/8

rT/T* 0.02 < z/L < 1
0.02 > z/L > −0.062
−0.062 > z/L > −1
−1 > z/L

1.4
0.5
1.0
1.0

−1/4
−1/2
−1/4
−1/3
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was developed by Högström et al. (2002). A parameterization according to this
finding for the neutral and slightly unstable and stable range is given in Table 2.14.
For scalars, such a parameterization cannot be found due to the high dependency on
the stratification in this range.

2.5 Turbulence Spectrum

Knowledge of the turbulence spectrum (see Sect. 1.4.3) is critically important for
choosing sensors and defining optimal sensing strategies for given atmospheric
conditions. Many sensing and also modelling techniques are possible only within
certain portions of the turbulence spectrum, or are based on assumptions about the
distribution of spectral energy density. Turbulence spectra vary depending on the
state parameters, fluxes, and micrometeorological conditions. In the frequency
range of interest to micrometeorology, i.e. periods shorter than about 30 min, three
ranges can be identified. The range of production of the turbulent energy by the
mean flow is characterized by the integral turbulent length scale K, which is in the
order of 10–500 m (Kaimal and Finnigan 1994). The typical frequency range is
f * 10−4 Hz (note that here f is not the Coriolis parameter). This range is followed
by the inertial sub-range in which turbulence is assumed to be isotropic, i.e. the
turbulent movements have no preferential direction. In this range, a well defined
energy decrease with increasing frequency occurs according to Kolmogorov’s laws
(Kolmogorov 1941a, b). The decrease of energy is proportional to f−5/3. After
multiplying the energy by the frequency the Kolmogorov laws predict an f −2/3

decrease for state parameters and an f −4/3 decrease for the fluxes. In the third range,
with frequencies of 10−30 Hz the kinetic energy of the small eddies is transformed
into thermal energy (energy dissipation). The typical dissipation length scale is the
Kolmogorov’s microscale

g ¼ m3

e

� �1=4

; ð2:110Þ

which is about 10−3 m.
The three parts of the turbulence spectrum in the micrometeorological range are

plotted against wave number in Fig. 2.10. Maximum energy occurs at the integral
turbulence length *1/k. Note that K = p/k, is the Eulerian integral turbulence

Table 2.14 Parameterization
of the integral turbulence
characteristics for neutral and
slightly unstable and stable
stratification (Thomas and
Foken 2002)

Parameter −0,2 < z/L < 0,4

rw=u� 0:21 ln zþ f
u�

� �
þ 3:1 zþ ¼ 1 m

ru=u� 0:44 ln zþ f
u�

� �
þ 6:3 zþ ¼ 1 m
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length scale. This length scale can be given for all wind components and scalars.
According to Taylor’s frozen turbulence hypothesis (Taylor 1938), wave number
and frequency are related as:

k ¼ 2p f =u ð2:111Þ

Using Eq. (2.111), the integral turbulence length scale can be transferred into an
integral turbulence time scale Tu which is defined by the autocorrelation function qu
for the horizontal velocity perturbation (Monin and Yaglom 1973; 1975;
Schlichting and Gersten 2003; Wyngaard 2010),

Ku ¼ u � Tu ¼ u
Z1
0

qu nð Þ dn ¼ u
Z1
0

u0 tð Þ u0 tþ nð Þ
r2u

dn: ð2:112Þ

Because the autocorrelation function is usually an exponential function, the
integral time scale, s, is given q(s) = 1/e * 0.37. This is schematically illustrated
in Fig. 2.11.

The energy spectrum under the assumption of local isotropy along with the
Kolmogorov constant bu * 0.5−0.6 (Kolmogorov 1941b) can be given in the
inertial sub-range by the so-called −5/3-law, here presented for the horizontal wind
component:

Eu kð Þ ¼ bu e
2=3 k�5=3 ð2:113Þ

A B C

k

k

k
k

(k
)

E

In

-5/3

~

~
1

1

Fig. 2.10 Schematic plot of
the turbulence spectra and the
ranges of energy production
(A), the inertial sub-range
(B) and the dissipation range
(C) dependent on the wave
number k (Adapted from
Kaimal and Finnigan 1994,
with kind permission of
© Oxford University Press,
Oxford 1994, All rights
reserved)
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In an analogous way, the energy spectrum of the temperature in the inertial
sub-range is

ET kð Þ ¼ bT NT e
�1=3 k�5=3; ð2:114Þ

with the Kolmogorov constant bT * 0.75–0.85 (Corrsin 1951), and NT is the
dissipation rate of the variance of the temperature Eq. (2.94). For humidity, the
inertial sub-range spectrum is

Eq kð Þ ¼ bq Nq e
�1=3 k�5=3 ð2:115Þ

with the Kolmogorov constant bq * 0.8–1.0. The mathematical background for
spectral diagrams is briefly given in Supplement 2.4.

Supplement 2.4 Fourier series and frequency spectrum

A function f, e.g., a time series of a meteorological parameter with tur-
bulent fluctuations (Fig. 1.13), can be represented by a system of orthogonal
functions:

f ðxÞ ¼ a0
2

þ
X1
k¼1

ak cos kxþ bk sin kxð Þ ðS2:3Þ

ak ¼ 1
p

Z2p
0

f ðxÞ cos kx dx bk ¼ 1
p

Z2p
0

f ðxÞ sin kx dx ðS2:4Þ

Fig. 2.11 Autocorrelation function and its relation to the integral time scale. The value 1/e is a
good approximation for which the area of the shown rectangle is equal to the area below the
exponential plot (Adapted from Kaimal and Finnigan 1994, with kind permission of © Oxford
University Press, Oxford 1994, All rights reserved)
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In an analogous way, its representation by an exponential function is
possible:

f ðxÞ ¼
X1
k¼�1

ck eikx
� �

ck ¼ 1
2p

Zp
�p

f ðxÞ e�ikxdx ðS2:5Þ

The Fourier transformation is an integral transformation, which converts a
function of time into a function of frequency:

FðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z1
�1

f ðtÞ eixtdt ðS2:6Þ

The square root of the time integral over the frequency spectrum (energy
spectrum, power spectrum) corresponds to the standard derivation. The fre-
quency spectrum of two time series is called the cross spectrum. Its real part is
the co-spectrum, and the time integral of the co-spectrum corresponds to the
covariance.

Multiplying the TKE equation, Eq. (2.42), by the factor jz=u3� and assuming
steady state conditions (@e=@t ¼ 0), gives the dimensionless TKE equation for the
surface layer (Wyngaard and Coté 1971; Kaimal and Finnigan 1994):

um � z
L
� ut � ue þ I ¼ 0 ð2:116Þ

The imbalance term I is based on the pressure term. I disappears in the unstable
case and is of order z/L in the stable case. The transport term, ut, is of order –z/L in
the unstable case, and disappears in the stable case. The dimensionless energy
dissipation term is

ue ¼
jze
u3�

; ð2:117Þ

which can be described by a universal function (Kaimal and Finnigan 1994):

u2=3
e ¼ 1þ 0:5 z=Lj j2=3 for z=L� 0

1þ 5z=Lð Þ2=3 for z=L� 0

( )

u2=3
e ¼ 1þ 0:5 z=Lj j2=3 for z=L� 0

1þ 5z=Lð Þ2=3 for z=L� 0

( ) ð2:118Þ
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Additional universal functions for the energy dissipation are given in
Appendix A.4. A practical application of these equations is the determination of the
friction velocity using a scintillometer (see Sect. 6.2.5). Also, the energy spectrum
of the horizontal wind can be derived in the inertial sub-range (Kaimal and Finnigan
1994):

f � Su fð Þ
u2�

¼ 0:55

2pð Þ2=3
e2=3z2=3

u2�

� �
fz
u

� ��2=3

¼ 0:55

2pjð Þ2=3
u2=3
e

fz
u

� ��2=3
ð2:119Þ

The turbulence spectra of various parameters differ significantly in peak fre-
quency (maximum of the energy density) and their dependence on the stratification.
The peak frequency of the vertical wind corresponds to the highest frequencies
(0.1–1 Hz), and those of the horizontal wind are one order of magnitude lower
(Fig. 2.12). The vertical wind shows this typical form of spectrum for stable (peak
frequency shifted to higher frequencies) and unstable stratification. For the other
wind components and scalars, the peak frequencies are shifted to lower frequencies,
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Fig. 2.12 Models of the energy density spectrum of state variables and fluxes (Adapted from
Kaimal et al. 1972, with kind permission of © John Wiley & Sons Inc., New York 1972, All rights
reserved)
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and because of large scatter in the data, they are often not clearly seen. In this range,
mixed layer height often becomes an important, additional scaling parameter.

Energy density spectra are often used for the correction of measurement data
(see Sect. 4.1.2). Because of the difficulty in calculating spectra, models of spectra
are often applied. Such models were parameterized by Kaimal et al. (1972) on the
basis of the data of the Kansas experiment. With the usual normalization of the
frequency according to Eq. (1.19)

n ¼ f
z
u
; ð2:120Þ

the wind components for neutral and slightly unstable stratification (Kaimal and
Finnigan 1994) are:

f Su fð Þ
u2�

¼ 102 n

1þ 33 nð Þ5=3
ð2:121Þ

f Sv fð Þ
u2�

¼ 17 n

1þ 9:5 nð Þ5=3
ð2:122Þ

f Sw fð Þ
u2�

¼ 2:1 n
1þ 5:3 n5=3

ð2:123Þ

Højstrup (1981) proposed a stability-dependent parameterization for the vertical
wind for unstable stratification:

f Sw fð Þ
u2�

¼ 2 n
1þ 5:3 n5=3

þ 32 n z=� Lð Þ2=3
1þ 17nð Þ5=3

ð2:124Þ

For the temperature spectrum, which can also be used for other scalars, Kaimal
et al. (1972) published the following parameterization:

f ST fð Þ
T2�

¼
53:4 n

1þ 24 nð Þ5=4 for n\0:5
24:4 n

1þ 12:5 nð Þ5=3 for n� 0:5

( )
ð2:125Þ

For the co-spectra, (Kaimal and Finnigan 1994) proposed for the unstable case
(−2 < z/L < 0)

� f Cuw fð Þ
u2�

¼ 12 n

1þ 9:6 nð Þ7=3
; ð2:126Þ
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� f CwT fð Þ
u� T�

¼
11 n

1þ 13:3 nð Þ7=4 for n� 1:0
4 n

1þ 3:8 nð Þ7=3 for n[ 1:0

( )
; ð2:127Þ

and for the stable case (0 < z/L < 2):

� f Cuw fð Þ
u2�

¼ 0:05 n�4=3 1þ 7:9
z
L

� �
ð2:128Þ

� f CwT fð Þ
u� T�

¼ 0:14 n�4=3 1þ 6:4
z
L

� �
ð2:129Þ

A log–log plot of f SX(f) versus f (see e.g. Figure 2.12) can be used to illustrate
the power law relationships in the form f SX(f) � f−2/3 and SX(f) � f−5/3 (X is an
arbitrary parameter). In a linear-linear plot of SX(f) versus f, the area below the
graph in the range Df is equal to the standard deviation rA(Df). The resolution at
low frequencies is often bad. In a log-linear plot the area below the graph of
f � SX(f) versus f, is equal to the energy density. The multiplication of the values of
the ordinate by f and logarithmic abscissa, gives a better representation of the low
frequencies.

Figure 2.12 illustrates that the frequency of the energy maximum of the spectra
is one order larger for the vertical than for the horizontal wind velocity.
Accordingly, vertically moving turbulence elements are smaller and have a higher
frequency than horizontally moving turbulence elements.

An alternative statistical parameter to the autocorrelation function, Eq. (2.112),
is the structure function. It is a relation between the value of a variable at time t, X
(t), and its value at a later time, X(t + L), note L is not the Obukhov length. If the
time between the measurements is DT, then L = j DT and

DXXðLÞ ¼ 1
N

XN�j

k¼0

Xk �Xkþ j
� �2

: ð2:130Þ

If simultaneous measurements are made at several locations, the structure
function can be computed using L = jDr where Dr is the spatial separation between
measurement sites.

The energy density in the inertial sub-range according to Eq. (2.112) can also be
determined using the structure function (Tatarski 1961), which is with the spatial
distance r

Du rð Þ ¼ cu e
2=3 r2=3; ð2:131Þ

with the structure constant cu * 4.02 bu, bu * 0.5 (Sreenivasan 1995), and the
structure function parameter

2.5 Turbulence Spectrum 71



C2
u ¼ cu e

2=3: ð2:132Þ

The structure function for the temperature is given by

DT rð Þ ¼ cT NT e
�1=3 r2=3; ð2:133Þ

with the structure constant cT * 4.02 bT, with bT Obukhov-Corrsin constant
(Obukhov 1949; Corrsin 1951), and the structure function parameter

C2
T ¼ cT NT e

�1=3: ð2:134Þ

The Obukhov-Corrsin constant is about 0.4 (Sreenivasan 1996). The ratio bT/bu
is equal to the turbulent Prandtl number.

The structure function for moisture is given by

Dq rð Þ ¼ cq Nq e
�1=3 r2=3; ð2:135Þ

with the structure constant cq * 4.02 bq and the structure function parameter

C2
q ¼ cq Nq e

�1=3: ð2:136Þ

The structure function parameters are very relevant for meteorological measur-
ing techniques (Kohsiek 1982; Beyrich et al. 2005), because they are directly
connected to the refraction structure function parameter Cn

2 (Hill et al. 1980),

C2
n ¼ 79:2 � 10�6 p

T2

� �2
C2
T ð2:137Þ

which is proportional to the backscatter echo of ground-based remote sensing
techniques:

C2
n ¼ A2C2

T þ 2ABCTq þB2C2
q ð2:138Þ

The coefficients A and B are dependent on temperature, humidity, pressure and the
electromagnetic wave length (Hill et al. 1980; Andreas 1989; Beyrich et al. 2005).
While a dependence on temperature and humidity exists formicrowaves, the humidity
dependence on visible and near infrared light is negligible.

The stability dependence of the structure function parameter is given by a
dimensionless function of the energy dissipation, which has the character of a
universal function (Wyngaard et al. 1971b). For the surface layer, they are given in
the form (Kaimal and Finnigan 1994):
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C2
u z

2=3

u2�
¼ 4 1þ 0:5 �z

L

� �2=3
for z=L� 0

4 1þ 5 z
L

� �2=3
for z=L[ 0

( )
ð2:139Þ

C2
T z2=3

T2�
¼ 5 1þ 6:4 �z

L

� ��2=3
for z=L� 0

5 1þ 3 z
L

� �
for z=L[ 0

( )
ð2:140Þ

Other universal functions are listed in Appendix A.4. These will be used later for
the determination of the sensible heat flux with scintillometers (see Sect. 6.2.5).
Within the range of uncertainties of the measurements, all functions for CT

2 can be
applied.

The temperature structure function parameter CT
2 can be determined according to

Wyngaard et al. (1971b) by the vertical temperature profile

C2
T ¼ z�4=3 @h=@zð Þ2 fT Rið Þ ð2:141Þ

with the empirical stability function fT (Ri).

2.6 Atmospheric Boundary Layer

Even though micrometeorological measurements and modelling primarily focus on
the surface layer it could be shown that the characteristics of the atmospheric
boundary layer are important for many processes. As an example, the mixed-layer
depth limits the vertical mixing of emissions. Therefore, in the following a short
overview of the determination of the mixed layer height and of boundary-layer
profile relationships is presented. More in-depth descriptions are given in the lit-
erature (Stull 1988; Garratt 1992; Jacobson 2005; Kraus 2008).

2.6.1 Mixed Layer Height

For practical issues the boundary-layer height, which includes the capping inversion
and entrainment layer, is less important than the mixed-layer height. In the mixed
layer (see Sect. 1.3), emissions from the surface and any material passing through
the entrainment layer are mixed by convection and mechanical turbulence at time
scales of about 1 h (Seibert et al. 2000). However, there is no standard method
available to determine the mixed-layer height. Several observational methods and
modelling approaches have been adopted.

Traditional methods use data from radiosondes, but can also be applied to
observations from tethered balloons and aircrafts. For convective conditions, the
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simplest method is the parcel method (Holzworth 1964, 1967). It is assumed that an
air parcel lifts up adiabatically in the unstable boundary layer up to a level, where
the surrounding potential temperature is warmer than those of the parcel (Fig. 2.13).
One shortcoming of this method is finding the right surface temperature due to
strong vertical temperature gradients near the surface. For instance, Troen and
Mahrt (1986) proposed to apply an additional correction term to the surface tem-
perature. According to Seibert et al. (2000) the same effect is achieved by using the
virtual potential temperature of the surface level. A method proposed by Busch
et al. (1976) and applied by Troen and Mahrt (1986) was operationally imple-
mented by Beyrich and Leps (2012). It based on the calculation of the
bulk-Richardson number

RiB zð Þ ¼ �z
g

h0
� h zð Þ � h0ð Þ
u zð Þ2 þ v zð Þ2 : ð2:142Þ

The mixed-layer height is the level where RiB reaches a critical value of about
0.2.

Sounding techniques like sodars and lidars, which can detect temperature
inhomogeneities, or strong gradients of moisture or aerosol concentrations, are also
suitable to determine the mixed-layer height. However, due to measurement-range
limitations, sodars can typically only detect the mixed layer evolution in the
morning (Beyrich 1997). Lidars, on the other hand, cannot be applied in the case of
low clouds because the backscatter from the cloud base is very strong and areas
above the clouds cannot be seen. Recently, it was shown that mixed-layer height
can also be reliably estimated with ceilometers, which are widespread to detect
cloud base height, if the general shortcomings of lidar techniques are accepted
(Münkel et al. 2007). Finally, mixed layer heights determined with remote tech-
niques are in a good agreement with numerical simulations (Helmis et al. 2012).

t (p)
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1000
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20

Fig. 2.13 Determination of
the mixed layer height with
the parcel method using the
thermodynamic diagram
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2.6.2 Resistance Law

Analogue to the surface layer, similarity laws can also be derived for the boundary
layer if the geostrophic wind speed ug is factored in. Besides the roughness length,
the Obukhov length and the Coriolis parameter the geostrophic drag coefficient
u�=ug and the Rossby number,

Ro ¼ ug
fz0

; ð2:143Þ

are the scaling parameters (here and in Eq. 2.146 ug is the mean geostrophic wind
velocity and not the component of the geostrophic wind in x-direction like in
Eq. 2.11 and the following text). Thus type of scaling is called Rossby number
similarity (Garratt 1992; Kraus 2008; Salby 2012; Hantel 2013). On this basis,
Kazanski und Monin (1960, 1961) developed a stability parameter for the whole
boundary layer

l ¼ zi
L
; ð2:144Þ

with the boundary layer height determined by

zi ¼ ju�
f

ð2:145Þ

Furthermore, Kazanski und Monin (1960, 1961) formulated the so-called re-
sistance law, which can be applied for the calculation of wind profiles:

ln Ro ¼ A� ln
u�
ug

þ j2

u�=ug
� �2 � B2

" #
ð2:146Þ

For both horizontal wind components ug und vg (perpendicular to ug) of the
geostrophic wind follows:

ug
u�

¼ 1
j

ln
u�
fz0

� A

� �
ð2:147Þ

vg
u�

¼ B
j

ð2:148Þ

The coefficients A and B are functions of the stability parameter µ.
The resistance low was subject of intensive theoretical and experimental

investigations in the 1960s and 1970s (Csanady 1967; Blackadar and Tennekes
1968; Clarke 1970; Wippermann and Yordanov 1972; Clarke and Hess 1974;
Zilitinkevich 1970, 1975). Due to high uncertainties in the determination of A and
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B and progress in numerical modeling techniques the resistance law is nowadays
rarely discussed in textbooks (Blackadar 1997; Kraus 2008). More recently is has
however again received attention in wind energy studies that require relatively
simple methods to determine the wind profile and wind resource in the whole
boundary layer (Gryning et al. 2007; Peña et al. 2010).

2.6.3 Integral Turbulence Characteristics

Integral turbulence characteristics can also be applied above the surface layer. For
free convection (z/L < −1), scaling with the Deardorff velocity Eq. (2.42) and the
mixed layer height, zi, is necessary (Garratt 1992). Such parameterizations must
show the decrease of the integral characteristics with increasing height as well as
the increase in the entrainment layer. The following parameterizations were given
by Sorbjan (1989, 2008):

rw=w� ¼ 1:08 z=zið Þ1=3 1� z=zið Þ1=3 ð2:149Þ

rh=T� ¼ 2 z=zið Þ�2=3 1� z=zið Þ4=3 þ 0:94 z=zið Þ4=3 1� z=zið Þ�2=3 ð2:150Þ
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