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ABSTRACT

Local shear and convective instabilities of internal inertia-gravity waves (IGW) are examined assuming a
steady, plane-parallel flow with vertical profiles of horizontal velocity and static stability resembling an IGW
packet in a basic state at rest, without mean vertical shear. The eigenproblem can be described in terms of a
nondimensional rotation rate R 5 , where f is the Coriolis parameter, is IGW intrinsic frequency,f/v̂ , 1 v̂0 0

and IGW amplitude is a, such that a 5 1 for convectively neutral waves. In the nonrotating case, shear instability
is possible only for convectively supercritical waves, with horizontal wavevector aligned parallel or nearly
parallel to the plane of IGW propagation. Transverse convection, with wavevector aligned perpendicular to the
plane of IGW propagation, displays faster growth than parallel shear or convective instability at any horizontal
wavenumber. For intermediate R, eigenmodes in supercritical IGW are characterized at small horizontal wave-
number k by a transverse mode of convective instability and a parallel mode of shear instability. The transverse
mode again has larger growth rate at small k but is suppressed at high wavenumbers where parallel convection
prevails. Shear production of perturbation kinetic energy in transverse instability is positive (negative) at in-
termediate or large (small) R. For R approaching unity, shear instability takes precedence over convective
instability at all azimuths regardless of a. In this limit, growth of the most unstable mode is almost independent
of azimuth. It is shown that the parallel shear instabilities of an IGW are analogous to the unstable modes of
a stratified jet.

1. Introduction

Internal gravity waves experience amplitude growth
when propagating upward in a resting, quasi-compress-
ible atmosphere or approaching a critical level in ver-
tical shear. As the waves grow, they become unstable
to parametric instability (a resonant triad interaction at
small amplitude) and shear or convective instability (a
strong, local interaction). Resonant interaction may or
may not be important prior to local instability, depend-
ing on how fast the waves grow. In many situations
relevant to the atmosphere, it is reasonable to assume
conservative wave propagation up to a ‘‘breaking level’’
where a criterion for local instability is satisfied (Lind-
zen 1981). This assumption simplifies matters, because
no threshold for gravity wave instability actually exists.1

The concept of wave saturation via local instability, nev-

1 Parametric instability of simple waves (without mean shear) oc-
curs regardless of amplitude, but at small amplitude the timescale is
long compared to wave period, as shown by the instability of a pen-
dulum (McComas and Bretherton 1977). In convectively supercritical
waves, transverse (convective) instabilities with large horizontal
wavenumber are preferred (Klostermeyer 1991) and there is an ‘‘iso-
lated’’ mode at low wavenumber possibly corresponding to shear
instability.

Corresponding author address: Dr. Timothy J. Dunkerton, North-
west Research Associates, P.O. Box 3027, Bellevue, WA 98009.
E-mail: tim@nwra.com

ertheless, has been immensely helpful for understanding
the role of gravity waves in the atmosphere (Fritts 1984;
Dunkerton 1989).

The general approach to gravity wave instability is
via Floquet theory, a formalism for ordinary differ-
ential equations with periodic coefficients that de-
scribes the parametric instability of finite-amplitude
waves (Klostermeyer 1991). This method works best
at high intrinsic frequencies (Lombard 1994). Whether
it is practical, or even necessary, to use Floquet theory
for low-frequency waves remains to be seen. Labo-
ratory experiments and numerical simulations of large-
amplitude gravity waves display local shear or con-
vective instabilities within the wave field (Koop and
McGee 1986; Delisi and Dunkerton 1989; Winters and
D’Asaro 1989, 1994; Walterscheid and Schubert 1990;
Dunkerton and Robins 1992; Fritts et al. 1994; M.-P.
Lelong and T. Dunkerton 1997a,b manuscripts sub-
mitted to J. Atmos. Sci., hereafter LD97a,b). Eigen-
modes of steady, plane-parallel flow qualitatively de-
scribe the structure and growth rate of simulated grav-
ity wave instabilities (e.g., Dunkerton and Robins
1992). This approximation is justified if instabilities
are local (compared to the horizontal scale of the grav-
ity wave) and rapid (compared to the intrinsic timescale
of the gravity wave). If these conditions are not met,
or wave amplitude is subcritical with respect to local
instability, the formal method is necessary.

Convective instability is relevant to nonrotating grav-
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ity waves in the absence of mean shear. For these waves,
the local Richardson number (section 2a) is

2N
Ri 5 → 1/2 (1.1)

2(]U/]z)

at the point of isentropic or isopycnal overturning. A nec-
essary condition for shear instability of steady, plane-par-
allel flow, Ri , 1/4, is satisfied only when Ri , 0; that
is, when the waves are also convectively unstable. It is
unclear which type of instability (shear or convective) will
be more important in overturned waves, but the growth
of convection is expected to be relatively fast if energy is
initially present at large horizontal wavenumber.

In inertia-gravity waves (IGW) with constant or slowly
varying amplitude, mean vertical shear (ūz . 0), and/or
rotation (R 5 f/ 0 . 0) favor shear instability within thev̂
wave field as the primary mechanism of breakdown, be-
cause it is then possible that 0 , Ri , 1/4. For IGW
without mean shear, the threshold for Ri , 1/4 is satisfied
in a direction perpendicular to the plane of IGW propa-
gation if

20.25a
22R , 1 1, (1.2)

1 2 a

where a 5 zu9/ĉ0z is a nondimensional measure of IGW
amplitude such that overturning begins at a 5 1 (Dunk-
erton 1984; Fritts and Rastogi 1985). For any value of
R, a larger value of a is required in order to attain Ri
, 1/4 in other azimuthal directions. It was originally
thought that shear instability of IGW would appear first
in the transverse direction,2 that is, with instability
wavevector perpendicular to the plane of IGW prop-
agation, at the value of a 5 as(R) implied by (1.2). In
their study of shear instability in a steady, plane-par-
allel flow approximating that of an IGW (with no mean
shear), Fritts and Yuan (1989) found, however, that
significant modal instability is likely only when R *
0.7. The criterion Ri , 1/4 is evidently insufficient for
modal instability in this case, nor is the depression of
Ri below 1/4 by itself a good indicator of growth rate.
If the concept of IGW saturation via shear instability
(Dunkerton 1984) is to be useful, with threshold de-
termined by (1.2), it must be shown (among other
things) that instabilities exist in the (R, a) plane at some
small distance above this threshold, with sufficiently
fast growth rate to saturate, or to prevent further growth
of, the primary wave. The analysis of IGW instability,
however, is complicated by two factors. First, insta-
bility growth rates are relatively small near the thresh-
old, or go to zero, so the assumption of steady, parallel
flow is invalid. Eigenmodes obtained in this approxi-
mation are relevant only if their growth is rapid com-
pared to an IGW period (Fritts and Yuan 1989). Sec-

2 Mean vertical shear will tend to align shear instability in the
direction of maximum total shear (Yuan and Fritts 1989).

ond, the vertical structure of an inertia-gravity wave
packet is approximately sinusoidal rather than having
the form of a simple shear layer. As shown in section
3, the hyperbolic tangent velocity profile used by Fritts
and Yuan (1989) to approximate the structure of IGW
is inadequate for understanding shear instability of
IGW, especially parallel modes of instability, as R →
1 and/or a . 1.

In a slowly varying nonparallel or nonuniform flow,
construction of a ‘‘local’’ instability begins with the
eigenmodes of parallel flow in the complex horizontal
wavenumber plane (Huerre and Monkewitz 1990; Pier-
rehumbert 1984; Dunkerton 1993; Clark and Haynes
1996). Local instabilities have zero group velocity with
respect to the pattern of basic-state flow; in this way,
their location remains fixed within, or slightly down-
stream from, the most unstable part of the flow. A
general theory of IGW instability will benefit from the
concept of ‘‘absolute instability’’ discussed in other
geophysical contexts, but (as a practical matter) there
is much yet to be learned about the instability of strat-
ified shear (under the assumption of steady, parallel
flow) in a configuration approximating the vertical
structure of an inertia-gravity wave packet. Our un-
derstanding of eigenmodes at real k remains incom-
plete; in this paper, therefore, I consider the parallel-
flow problem as a first step to a more general theory
of local instability in nonuniform flow. As it turns out,
unstable eigenmodes of parallel flow are useful for
interpreting recent numerical simulations of breaking
IGW. An immediate goal is to generalize the results of
Fritts and Yuan (1989) to realistic IGW profiles and
to consider a larger range of parameters (R, a) since
their discussion was limited to minimum Ri 5 0.10.
The stability problem is nontrivial at real k because
different modes of instability are expected depending
on IGW parameters (R, a), instability wavenumber k
(5 zkz), and orientation (a).

Section 2 reviews the theory of parallel-flow insta-
bility as applied to IGW and section 3 describes the
resulting instabilities for an IGW packet without mean
shear. Section 3f revisits the stability problem of Dunk-
erton and Robins (1992) to illustrate the effect of weak
mean shear and azimuthal dependence of 3D instabili-
ties. It will be shown that, in both prototype and ‘‘re-
alistic’’ situations, breakdown of IGW via parallel shear
instability is analogous to the instability of a stratified
jet (Sutherland and Peltier 1994). The relative impor-
tance of shear and convective instability as a function
of R, a, k, and a will be clarified.

2. Stability analysis

a. Theory

Instabilities on a steady, plane-parallel flow approx-
imating a particular longitude and time of IGW motion
are governed by the Taylor–Goldstein equation
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2N Uzz 2c 1 c 1 2 k 5 0, (2.1)zz 2[ ](c 2 U) (c 2 U)

where c is streamfunction in the vertical plane; c and
k are complex phase speed and horizontal wavenumber
of instability; and N2 and U are vertical profiles of static
stability and horizontal wind in the direction of insta-
bility wavevector k, including the IGW contribution

2 2N 5 N (1 2 a cosF)0 (2.2a)
U 5 aĉ (cosF cosa 1 R sinF sina) 5 aĉ U*,0 0

(2.2b)

where R [ f/ 0, f is the Coriolis parameter, and 0 isv̂ v̂
IGW intrinsic frequency. The phase of IGW (F) is
equal to k0·x 2 v0t → m0z in the approximation of
steady, plane-parallel flow. Without loss of generality,
the IGW horizontal wavevector points in the zonal (x)
direction; a is the azimuthal angle between the hori-
zontal wavevectors of IGW and instability, such that
U is the component of total horizontal velocity u 5
(u, y) parallel to the instability wavevector k,

U 5 u \ 5 k·u / zkz. (2.3)

Instabilities with a 5 08 are referred to as ‘‘parallel’’
to the plane of IGW propagation, and instabilities with
a 5 908 as ‘‘transverse’’ to this plane. (Ordinarily, the
terms ‘‘streamwise’’ and ‘‘spanwise’’ might apply, but
insofar as there is no mean flow, and the IGW velocity
field points in all azimuths, such usage would be am-
biguous in this context.) In (2.1) it is unnecessary to
know the component of horizontal velocity perpendic-
ular to the instability wavevector, although this com-
ponent may passively advect the instability wave packet.
In (2.2a,b) the nondimensional amplitude of IGW is a,
such that a 5 1 at the point of overturning. For hydro-
static IGW, the intrinsic phase speed ĉ0 is related to the
vertical wavenumber m0 through the dispersion relation

2 2 2N k N0 0 02m 5 5 . (2.4a)0 2 2 2 2v̂ 2 f ĉ (1 2 R )0 0

For nonhydrostatic IGW,

2 2 2 2N 2 v̂ N f0 0 02 2m 5 k 5 · 1 2 ,0 02 2 2 2 2 21 2v̂ 2 f ĉ (1 2 R ) R N0 0 0

(2.4b)

which adds another parameter f/N0 (besides R and a) to
the specification of IGW basic state. Hereafter it is as-
sumed that f 2 K , so that the basic state is described2N0

entirely by (R, a).
Substitution of (2.2a,b) into (2.1) using (2.4a) yields

the nondimensional equation

21 2 R 1 2 a cosF U*0
2c0 1 c 1 2 k* 5 0,

2 2[ ]a (c* 2 U*) (c* 2 U*)

(2.5)

where the prime denotes differentiation with respect
to nondimensional height z* 5 m0z, and k* 5 k/m0,
c* 5 c/(aĉ0). The static stability term is weighted by
(1 2 R2), so that when R → 1, this term is small, and
instabilities are expected to approach those of un-
stratified flow (Fritts and Yuan 1989). IGW amplitude
appears in three ways: in the factor (1 2 R2)/a2, in
the phase dependence of IGW (1 2 a cos F), and in
the dimensional form of c 5 aĉ0c*. Obviously, the
dimensional phase speed (hence, growth rate) is pro-
portional to a, but a also reduces the effective static
stability (enhancing the growth of shear instability).
When a . 1, convective instability is possible. The
maximum growth rate of convective instability in-
creases like a 2 1 (since the minimum N2 decreasesÏ
below zero as 1 2 a). In the following section it will
be shown that, for values of R . Rc(a), the growth
rate of shear instability exceeds the maximum growth
rate of convective instability so that shear instability
takes precedence over convection even if a . 1. In
this case, convective eigenmodes are apparently sup-
pressed.

The azimuthal dependence is contained entirely in U,
having the symmetry properties

U(a, F) 5 U(2a, 2F) (2.6a)

U (a, 2F) 5 2U (2a, F), (2.6b)z z

so that negation of a is equivalent to inversion of
phase (i.e., the z coordinate in steady, parallel flow).
When vertically symmetric boundary conditions are
imposed on (2.1), it is necessary to consider only a
single quadrant 0 # a # p/2. This is no longer the
case when rotation is important for instability. A gen-
eralized equation for the vertical velocity perturba-
tion, in this case, is

2 2 2 2 2ˆ ˆˆ ˆfZ 1 f v̂ /v̂ (k 1 , )(N 2 v̂ ) 1 v̂(ku 1 ,y ) 1 fv̂(Z /v̂)z z zz zz z zw 1 w 1 w 5 0, (2.7)zz z 2 2 2 2[ ] [ ]v̂ 2 f v̂ 2 f

where Z 5 i( 2 u) 5 izkzu', is the intrinsicˆk̂v , v̂
frequency of instability, and subscript z denotes the

vertical derivative. Equation (2.6) is similar to that
of Yamanaka and Tanaka (1984) for IGW in vertical
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shear.3 Hereafter the effect of rotation on instability
will be ignored, that is, k f, which is satisfied ifv̂

k 0 * f as required for the approximation ofv̂ v̂
steady, plane-parallel flow to be accurate.

The profile of Richardson number corresponding to
(2.2a,b) is

2 2N (1 2 R )(1 2 a cosF)
Ri 5 5a 2 2 2(]U/]z) a (R cosF sina 2 sinF cosa)

(2.8)
(Fritts and Yuan 1989). When a 5 p/2, the criterion
(1.2) ensures that a necessary condition for instability,
Ri , 1/4, is satisfied in the transverse direction. Larger
IGW amplitudes are required for Ri , 1/4 when a ,
p/2. For convectively stable (a , 1) perturbations with
horizontal wavevector in the plane of IGW propagation
(a 5 0), R must exceed 2/2 for Ri , 1/4. This con-Ï
dition does not guarantee the existence of unstable ei-
genmodes. Other factors in addition to Ri determine the
growth rate (Lindzen et al. 1980). As it turns out, a clear
preference for transverse eigenmodes of shear instability
in convectively stable IGW exists only in a narrow range
of R ; 0.7–0.85 when a realistic vertical structure is
assumed within the context of a steady, parallel-flow
approximation. According to (1.2), there should be no
critical value of R . 0 for shear instability in the trans-
verse direction, but, as shown by Fritts and Yuan (1989)
and in section 3, modal shear instability of convectively
stable IGW is unlikely to be important when R & 0.7.

b. IGW configuration

The general profile of IGW adopted for this study is
of the form

2 2N 5 N (1 2 A cosF) (2.9a)0

U 5 Aĉ (cosF cosa 1 R sinF sina), (2.9b)0

where

pz
pA 5 A(z) 5 a cos (2.10a)1 22zm

2z 5 (2n 1 1)l . (2.10b)m z0

Here, A(z) is the wavepacket envelope and lz0 is the
vertical wavelength of IGW. Boundaries were placed at
(2zm, zm), and the minimum static stability was located
at z 5 0. Our approach is similar to that of Fritts and
Yuan (1989) but no approximation to the velocity profile
was made here.

Numerical solutions of (2.1) could be obtained in a
channel with rigid boundaries, radiation boundary con-
ditions, or vertically periodic boundary conditions. Ei-

3 Minor differences arise due to their assumption of geostrophically
balanced basic state, as opposed to unbalanced IGW.

genmodes of interest to this study are vertically trapped
away from the point of maximum instability if such a
maximum exists, as guaranteed by (2.10a) if p . 0. For
trapped disturbances, it is adequate to assume c9 5 0
at the boundaries if they are placed far enough away
from the center of eigenfunction.

Two sets of experiments demonstrated the effect of
configuration parameters (n, p) on the solution. In one
set, boundaries were moved progressively farther away,
holding the wave packet envelope approximately con-
stant (increasing n and p simultaneously). In another
set, boundaries were moved farther away, allowing the
wave packet to fill the channel (increasing n, holding p
5 1). The first set of experiments showed that at least
three vertical wavelengths (n 5 1) were necessary to
obtain eigenfunctions decaying exponentially at the
boundaries; convergence was obtained with five or more
wavelengths (n $ 2). The second set demonstrated how
local eigenfunctions obtained in (2.9) gradually evolve
into periodic solutions as the vertical extent of the wave
packet increases.

It is impossible to analyze all IGW configurations, so
it is assumed hereafter that (n, p) 5 (3, 1). This com-
bination maximizes vertical resolution of the IGW pro-
file for a fixed number of gridpoints while ensuring that
boundaries have a negligible effect on the eigenmodes
of interest. Two solution methods were employed, sim-
ilar to those of Dunkerton (1990): (i) a shooting tech-
nique for complex eigenfrequency enabled all modesv̂
to be obtained regardless of growth rate and (ii) an
implicit time-dependent code gave the most unstable
mode at each k. For the most unstable mode, nearly
identical results were obtained with the two methods.
In the time-dependent technique, the equations of mo-
tion are

D u9 1 w9U 1 p9 5 0, (2.11a)t z x

D w9 1 p9 2 b9 5 0, (2.11b)t z

2D b9 1 N w9 5 0, (2.11c)t

u9 1 w9 5 0, (2.11d)x z

where u9, w9 now represent horizontal and vertical ve-
locity perturbations; p9 is the pressure perturbation nor-
malized by basic density; b9 is the buoyancy pertur-
bation; and

] ]
D 5 1 U . (2.12)t ]t ]x

where [in (2.11) and (2.12) only] x points in the direction
of instability wavevector. Disturbances are incompress-
ible, nonrotating, and nonhydrostatic. Time derivatives
are written in finite-difference form; for example, as

]u u 2 u 2n11 n5 5 (û 2 u ), (2.13)n]t Dt Dt

where û is evaluated midway between two adjacent time
steps. The relevant Taylor–Goldstein equation is then
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FIG. 1. Growth rate of IGW instabilities with horizontal wavevector
in the parallel (a 5 08, lower solid curve) and transverse direction
(a 5 908, upper solid curve) for (R, a) 5 (0.0, 1.5) obtained from
the time-dependent model, showing the most unstable mode as a
function of k. Two intermediate azimuths are also shown (a 5 308,
608, dotted lines). In this figure and the following, dimensional growth
rates and wavenumbers are indicated (multiplied by 1000) for basic-
state parameters 5 4 3 1024 s22 and ĉ0 5 10 m s21. Horizontal2N0

dotted line at top displays the maximum growth rate of convective
instability as k → `.

2N Uzz 2ˆ ˆc 1 c 1 2 k 5 D, (2.14)zz 2[ ](c 2 U ) (c 2 U )

where c 5 2i/kDt and D is a complicated expression
involving fields at the nth time step. The tridiagonal
algorithm was used to solve this equation as in (2.1),
with 201 vertical grid points.

3. Instability of a wavepacket

For any IGW configuration (n, p) the instability is a
function of nondimensional rotation rate R 5 f/ 0, IGWv̂
amplitude a, instability horizontal wavenumber k, and
orientation a relative to the horizontal component of
inertia-gravity wavevector. At small to intermediate R,
local instability is significant only for convectively su-
percritical IGW (a . 1). At large R (& 1), instability
is important for subcritical as well as supercritical a. To
simplify the investigation, a convectively supercritical
case (a 5 1.5) was examined for 0 # R # 0.95 over a
range of k and several horizontal azimuths a. For ei-
genmodes with local maximum growth rate at some real
k 5 km, the variation of maximum growth rate as a
function of R, a, or a was determined by varying these
parameters gradually while varying k at the same time,
such that k 5 km(R, a, a). It is important to remember
that, depending on the behavior of convection at large
k, such a local maximum does not necessarily represent
the most unstable wavenumber over all k.

a. Supercritical a, R 5 0

When R 5 0, there is no transverse velocity com-
ponent of the IGW. As shown in Fig. 1, the preferred
instability is transverse (a 5 908) without horizontal
scale selection. Growth rate asymptotes to the maximum
growth rate of convection N0 a 2 1 as k → `. TheÏ
instability is purely convective. Results at a 5 608 are
similar, with slightly lower growth rate at any k. In the
zonal direction (a 5 08), there is a local maximum at
small k representing the so-called radiating mode of
shear instability (Dunkerton and Robins 1992, hereafter
DR). This peak is slightly larger and less distinct at a
5 308. All azimuths display convective instability at
large k.

Structure of the parallel mode of shear instability at
k 5 km ø 1.6 3 1023 m21 is shown in Fig. 2a. The IGW
velocity profile in this direction is shown in Fig. 2b,
with instability critical levels superposed. These levels
are adjacent to local minima of the eigenfunction. There
are two critical levels on either side of the jet maximum
and three primary lobes of streamfunction amplitude.
The eigenfunction decays rapidly to zero before en-
countering the boundaries. Phase lines appear to radiate
away from center. In physical space, isopleths of phase
are tilted against the mean shear, making the shear a
source of perturbation kinetic energy (PKE) as in DR.
Those authors referred to the parallel eigenmode as a

radiating mode of convective instability aided by shear
generation of PKE. This interpretation is misleading and
should be changed to indicate an eigenmode of shear
instability (hereafter S1) with phase tilt aligned against
the mean shear. Negative static stability is not essential
to the growth of this mode, as shown below.

Growth rate at a 5 08, k 5 km is less than that of
other azimuths, so it will be difficult to excite the parallel
mode in a 3D simulation (even if the initial noise falls
off rapidly with k) unless there is substantially more
energy in the zonal direction than in other azimuths.
This situation could arise if the spectrum at early times
is due entirely to self-interaction of the primary wave
(as in DR).

b. Supercritical a, intermediate R

As R is increased above zero, a meridional velocity
component of IGW appears in quadrature with the zonal
component, with relative magnitude R. The vertical
wavelength of IGW diminishes slowly as 1 2 R2. ForÏ
parallel instability (a 5 08), the meridional velocity
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FIG. 2. (a) Streamfunction amplitude (solid) and phase (dotted), and (b) IGW velocity profile, for S1 mode at a 5 08, k 5 km ø 1.6 3
1023 m21 when (R, a) 5 (0.0, 1.5). Phase of c on the x axis extends from 2p to p. In physical space, isopleths of phase are oppositely
tilted. Instability critical levels are indicated by diamonds in (b).

FIG. 3. Growth rate as in Fig. 1, but for (R, a) 5 (0.6, 1.5).

component does not enter the eigenproblem and there-
fore has no direct effect on growth rate. As shown in
Fig. 3 for R 5 0.6, parallel instabilities experience a
small reduction of growth rate at all k and a shift of the
S1 peak to slightly higher k. Growth rates are plotted
versus dimensional k in these figures; the shift to higher
k is consistent with a slight reduction of lz0. In marked
contrast, the transverse instability (a 5 908) at large k

is suppressed by transverse velocity shear due to small
or moderate R. Note that IGW vertical shear within the
region of overturning maximizes in the transverse di-
rection. The transverse mode persists at small horizontal
wavenumber and remains the most unstable azimuth at
small k, as it was for R 5 0. At a 5 308, growth rates
for large k are now slightly smaller than at a 5 08. At
a 5 608, growth rates for small (large) k are less than
(greater than) those at a 5 908.

For intermediate R, transverse instability is preferred
at small horizontal wavenumber while parallel instabil-
ity is preferred at large horizontal wavenumber. In nu-
merical simulations, the transverse instability will as-
sume greater importance if hyperdiffusion suppresses
the motion at large k and/or there is substantially more
energy initially available at small k.

Structure of the transverse eigenmode at k 5 km ø
2.1 3 1023 m21 for R 5 0.6 is shown in Fig. 4, together
with the IGW velocity profile in this direction. The ei-
genfunction has a single peak at the center of the region
of overturning. On either side, phase lines in physical
space tilt against the mean shear, so that shear generation
of PKE is positive. Mean shear evidently broadens the
eigenfunction (relative to that of purely convective
modes), giving it something of a triangular shape. The
interpretation of this mode is that of a convective in-
stability, or hybrid shear–convective instability, signif-
icantly enhanced by shear generation of PKE, with scale
selection attributable to the transverse shear.

As R is reduced back to zero, km → ` at a 5 908
and the transverse eigenmodes become essentially con-
vective. Unlike the situation for R 5 0.6 (Fig. 4a), con-
vective modes for 0 , R & 0.4 have modest phase tilt
aligned with the mean shear within the region of over-
turning so that shear generation of PKE is evidently
negative; that is, transverse mean shear is a sink of PKE.
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FIG. 4. Streamfunction and IGW velocity profile as in Fig. 2, but for transverse eigenmode a 5 908, k 5 km ø 2.1 3 1023 m21 when (R,
a) 5 (0.6, 1.5).

FIG. 5. Growth rate as in Fig. 1, but for (R, a) 5 (0.95, 1.5).

This result is consistent with recent numerical simula-
tions of convectively supercritical IGW by D. C. Fritts
(1995, personal communication).

c. R & 1

When R approaches unity, convective eigenmodes are
suppressed within the range of k that was investigated;
shear instabilities dominate. Remarkably, growth of the

S1 mode depends only weakly on azimuth, as shown in
Fig. 5. A second mode (S2) appears at small k, to the
left of the kink in Fig. 5, with antisymmetric stream-
function about the center. The two modes S1, S2 may be
likened to the sinuous and varicose modes of the strat-
ified Bickley jet, respectively (Hazel 1972). Trajectories
of complex (k) for S1 and S2 are nonintersecting; thev̂
S2 mode has a much larger phase speed and greater
sensitivity to azimuth a. Near its peak growth rate, the
S1 mode exceeds the maximum growth rate of convec-
tion (horizontal dotted line).

Structure of the parallel (a 5 08) eigenmode at k 5
km ø 4.3 3 1023 m21 is shown in Fig. 6, together with
the IGW velocity profile and instability critical levels.
This mode is similar to the R 5 0 version of S1 (Fig.
2a) but has much slower phase speed and several critical
levels. The phase function oscillates vertically in tandem
with U. In physical space, the instability’s phase tilt
opposes the mean vertical shear throughout the IGW
field. The instability, as it were, is extracting kinetic
energy from the IGW in an optimum way. When a is
varied, the eigenmode shifts upward roughly by a dis-
tance a, so that when a 5 908, this mode has two
maxima straddling a local minimum at z 5 0 (not
shown). Growth rate is approximately independent of
a because the ‘‘wave geometry’’ (Lindzen et al. 1980)
is relatively constant, thanks to the nearly helical ve-
locity profile of IGW and small phase speeds of insta-
bility. In other words, the IGW velocity component u\,
position of instability critical levels zc, and values of
(1/4 2 Ri) at the critical levels are similar except for
the velocity profiles and critical levels being translated
upward by a distance proportional to a. Recent 3D nu-
merical simulations of large-amplitude IGW by
LD97a,b in a triply periodic domain also demonstrate
that the growth rate and most unstable wavenumber of
the sinuous mode are insensitive to a.
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FIG. 6. Streamfunction and IGW velocity profile as in Fig. 2, for S1 mode at a 5 08, k 5 km ø 4.3·1023 m21 when (R, a) 5 (0.95, 1.5).

d. Local maximum vi

Figure 7 shows the local maximum growth rate at k
5 km for transverse (a 5 908) instability as R varies
from 0 to 0.95, for several values of a 5 0.9–1.5. An
example of parallel (a 5 08) instability is also shown
for a 5 1.5 (dash–dot line). For the parallel S1 mode,
if R & 0.85, this is not the most unstable wavenumber
over all k because parallel convection has larger growth
rate (cf. Figs. 1 and 3). It is interesting, nonetheless,
that a parallel mode of shear instability exists throughout
the range of R if a * 1.3. For transverse instability
(solid lines), growth rate is minimum at intermediate R
and climbs steadily as R → 0, approaching the maximum
growth rate of convection where km → `. (This is in-
dicated by dashed lines because the numerical calcu-
lation does not extend to infinite k.) Curves at a 5 608
(not shown) terminate prior to R 5 0 when a finite km

ceases to exist. Transverse modes have significantly
larger growth rates than parallel modes when R & 0.85,
while for larger R there is a weak preference for parallel
modes. Horizontal wavenumbers km (not shown) are
larger in the transverse direction and display a similar
variation with R as that of vi.

At large R, for any value of a, the growth rate of
shear instability exceeds the maximum growth rate of
convection. The two are equal along a curve R 5 Rc(a)
that can be visualized by connecting the locus of points
where, for each a, the growth rate of shear instability
intersects the corresponding horizontal (dotted) line.
Values of Rc are approximately 0.92–0.95 in the range
a 5 1.1–1.5.

As a is reduced below 1.5, modal growth rates di-
minish to zero approaching a neutral curve a 5 an (R,
a). Resolvable modal growth begins near a 5 1 for
small and intermediate R. Even at (R, a) 5 (0.7, 1) the
modal growth rate is very small (;0.00024 s21). A
transverse eigenmode is found at this point, containing
maximum zcz at the location of maximum transverse

velocity shear, with phase tilted against the shear (not
shown). The IGW is convectively neutral; therefore
shear production of PKE is the exclusive mechanism of
generation. Only in the range 0.7 & R & 0.85 and a &
1 is there a clear preference for transverse eigenmodes
of shear instability in the steady, parallel-flow approx-
imation. For supercritical a in this range of R, transverse
modes are preferred but are driven by a mixture of buoy-
ancy and shear effects. At R 5 0.95, transverse modes
have slightly larger growth rates than parallel modes in
the range 0.75 & a & 0.90, while parallel modes have
slightly larger growth rates for values of a outside this
range. These differences are insignificant from a mod-
eling point of view (LD97a). Structure of the eigen-
modes at R 5 0.95 is similar for subcritical and super-
critical values of a.

e. Interpretation

The weak azimuthal dependence of shear instability
at large R is unexpected from earlier results of Fritts
and Yuan (1989), which show a clear preference for
transverse instability. Interpretation of the parallel in-
stability (S1) as a symmetric mode of an unstable jet is
evidently important to this weak a dependence. A jet
structure in the zonal direction implies two instability
critical levels situated symmetrically about the jet max-
imum. When a hyperbolic tangent profile is used to
approximate the velocity structure of IGW (Fritts and
Yuan 1989), there is at most one instability critical level.
An unstable parallel mode exists in their geometry but
is displaced away from the static stability minimum
(where the transverse mode is centered). Here Ri(zc) is
lowest in the transverse direction in their profile as well
as ours, but in IGW the zonal direction has two equal
(though slightly larger) values of Ri(zc) that, in com-
bination, produce a parallel shear instability that is com-
petitive with transverse instability.
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FIG. 7. Growth rate of transverse instability at k 5 km for several values of a (solid lines)
as a function of R. An example of parallel shear instability is also shown for a 5 1.5 (dash–
dot line). Horizontal dotted lines indicate the maximum growth rate of convection at a 5 1.1,
1.2, . . . , 1.5.

FIG. 8. Streamfunction and IGW velocity profile for parallel mode of Fig. 6, but with modified velocity profile (jet structure).

Two variations of IGW velocity profile were exam-
ined to clarify the role of twin critical levels at a 5 08.
In the first variation, the zonal velocity component was
set to its minimum value outside the central lobe of the
IGW, preserving the exact jet structure in the center of
the channel and continuity of U, Uz at z 5 6l0z/2. This
modification resulted in a parallel eigenmode with
slightly lower horizontal wavenumber km and approxi-
mately the same growth rate as before. Amplitude and
phase of the eigenfunction are shown in Fig. 8a and the
modified velocity profile is shown in Fig. 8b. Phase tilts

are confined to the flanks of the jet, but the structure is
otherwise similar to that of Fig. 6a. A varicose mode
also exists in this profile. In the second variation, the
zonal velocity component was truncated to a quarter
(rather than half) wavelength, producing a single shear
layer. This gave a more substantial reduction of km to
about two-thirds of its unaltered value and reduction of
vi by about 15%. Structure of the eigenfunction (Fig.
9a) was similar to that of a transverse mode except for
being shifted off center. Only a single critical level exists
(Fig. 9b). The domain in this case was barely tall enough
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FIG. 9. Streamfunction and IGW velocity profile for parallel mode of Fig. 6, but with modified velocity profile (single shear layer).

FIG. 10. Growth rate of parallel (a 5 08) instabilities, obtained
with the shooting method, in the example of Dunkerton and Robins
(1992, their Fig. 9) in which a nonrotating gravity wave approaches
a critical level in vertical shear. Transverse convection (a 5 908) is
shown by the upper dotted line. An arrow indicates the dominant
mode of parallel shear instability identified previously.

to contain the eigenfunction, but similar results were
obtained at larger n, with larger reduction of vi. From
this example it is clear that the hyperbolic tangent ap-
proximation reduces the growth rate of the parallel
mode.

Growth of transverse modes, on the other hand, was
rather unaffected by this variation (when applied to the
meridional velocity component y). The hyperbolic tan-
gent approximation is evidently able to reproduce the
growth rate, but not vertical structure, of transverse in-
stabilities fairly well. As a is reduced in the truncated
velocity profile, the disparity between parallel and trans-
verse eigenfrequencies is expected to increase, because
Ri(zc) → 1/4 in the zonal direction prior to Ri(zc) →
1/4 in the meridional direction.

f. Effect of mean shear

Two-dimensional numerical simulations of a gravity
wave critical layer by DR showed that a mode of shear
instability developed prior to convection. Eigenmodes
of parallel flow explained the existence and scale se-
lection of this mode reasonably well. The question re-
mains as to what instability orientation (e.g., parallel or
transverse) would be most important in a 3D simulation.
Results of section 3a suggest that transverse convection
will dominate at all horizontal wavenumbers. Figure 10
displays an updated calculation of the growth rate of
parallel and transverse instabilities in DR’s wave packet,
without mean flow modification (refer to their Fig. 9
for and profiles). Eigenfrequency trajectories (ob-¯ū u
tained with the shooting technique) are more compli-
cated than anticipated by DR. The dominant mode of
parallel convection at large k grows faster than shown
in Fig. 10 of DR and agrees much better with their time-
dependent numerical results. Additional modes appear
at intermediate wavenumbers that provide a better ex-
planation of multiple spectral peaks in DR’s simulations.
Time-dependent calculations (not shown) confirm the
existence of three peaks at small and intermediate k,
below the convective continuum at large k.

The most important observation in Fig. 10 is that the
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FIG. 11. Growth rate of parallel instability as in Fig. 10 (small-k
lobe only) after convective adjustment was applied to the potential
temperature profile (dash–dot line). The effect of modifying the ve-
locity profile, retaining only a single jet at the center of the wave
packet, is shown by the dotted line.

growth of parallel eigenmodes is dwarfed by transverse
convection (a 5 908). In a 3D simulation, therefore,
transverse convection will overtake parallel shear in-
stability if isotropic noise is initially present. Conceiv-
ably, parallel shear instabilities might develop first if
the initial wavenumber spectrum is due entirely to self-
interaction of the primary wave. This would require a
‘‘clean’’ background state devoid of waves or turbulence
in other azimuths, an unlikely situation in reality. The
role of mean flow modification is to enhance the growth
of parallel shear instability as demonstrated in the ap-
pendix of DR.

Figure 11 illustrates the parallel eigenmode’s growth
rate (showing the lobe at small k only) after convective
adjustment was applied to the potential temperature ū
profile, leaving the velocity profile unaltered. Growth
of the shear instability is shifted to a slightly higher
wavenumber but not significantly attenuated. Convec-
tion is now absent in all azimuths, and only shear in-
stability remains, with maximum growth rate in the zon-
al direction. The absence of convection was confirmed
using the time-dependent code. Shear instability is
therefore possible in a convectively adjusted gravity
wave critical layer. The effect of turbulence produced
by convection is not taken into account, however, nor
is any change in the velocity profile. Figure 11 also

shows the effect of modifying the velocity profile such
that only a single jet remains at the center of the wave
packet (without any adjustment to . In agreement withū)
the previous section, the eigenfunction and growth rate
are insensitive to the flow outside this region.

4. Discussion

The preceding theoretical analysis demonstrates that
shear instability of internal gravity waves is important
in several circumstances. 1) If the initial noise spectrum
is biased in the direction of the primary wave (e.g., due
to self-interaction), shear instability will develop after
overturning (Dunkerton and Robins 1992). Parallel
shear instability may coexist with transverse convection
(or develop as a result of shear enhancement due to
convection) as shown by Fritts et al. (1994) and Winters
and Riley (1992). 2) If R 5 f/ 0 approaches unity priorv̂
to overturning, shear instability is the primary mecha-
nism of breakdown (Dunkerton 1984; Fritts and Rastogi
1985; Fritts and Yuan 1989). 3) If, for some reason, the
IGW packet evolves toward supercritical a too rapidly
for shear instability to develop at subcritical a, shear
instability will nevertheless dominate at supercritical a
for values of R . Rc(a). Without mean vertical shear,
little azimuthal preference is likely at large R regardless
of a. 4) For intermediate R, transverse modes of mixed
convective–shear instability occur in supercritical IGW.
5) Shear instability is enhanced by formation of a ledge
at the base of the critical layer when mean flow mod-
ification occurs (Dunkerton 1982; DR).

Numerical simulations by DR and Fritts et al. (1994)
and laboratory experiments of Delisi and Dunkerton
(1989) contained a mean vertical shear in addition to
the local shear attributable to the gravity wave. Mean
shear unfortunately adds another variable to an already
overcrowded IGW parameter space (n, p, R, a, k, a),
so an analysis of its influence is beyond the scope of
this paper. Nevertheless, it is important to distinguish
two effects of mean vertical shear on gravity wave
breakdown. First, mean shear superposes on that of the
wave, at certain phases constructively, so that shear in-
stabilities tend to align in the direction of the (wave 1
mean) shear (Yuan and Fritts 1989). Second, the primary
wave may encounter a critical level in mean vertical
shear (if such a level exists), resulting in rapid ampli-
fication of . In DR, the second effect was more im-u9z
portant than the first. The nature of this amplification
is to produce a jetlike structure of (ū 1 u9) beneath the
critical level, coincident with a local minimum of static
stability. For inertia-gravity waves [ignoring the subtle-
ties of a valve effect discussed by Yamanaka and Tanaka
(1984)] growth of a helical velocity structure is ex-
pected, with similar amplification of vertical shear but
in all azimuths. In a complicated field of small-ampli-
tude IGW dominated by critical-layer interactions, one
can imagine the apparently spontaneous formation of
these jets (or helixes) accompanied by local shear or
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convective instabilities and patches of turbulence (Barat
1983).

The instability of a stratified jet is relevant to zonally
aligned shear instabilities at any R. Eigenmodes are
characterized by amplitude and phase variations that are
vertically coupled so as to eventually lead to the for-
mation of staggered Kelvin–Helmholtz billows on op-
posite sides of the jet maximum (LD97a). This situation
is analogous to that of Sutherland and Peltier (1994),
who show the effects of stratification on the finite-am-
plitude evolution of instabilities in a Bickley jet. The
unstratified case generates staggered vortices of opposite
sign on either side of the jet, whereas in stratified flow
the overturning of isopycnals leads to turbulent break-
down and mixing. While our attention in this paper has
focused entirely on the theoretical aspects of linear ei-
genmodes, it is the turbulent breakdown, momentum
deposition, and mixing attributable to the growth of in-
stability that is ultimately of interest. The mixing effi-
ciency of breaking IGW has not been addressed in the
literature, except in nonrotating waves (Fritts and Dunk-
erton 1985; Coy and Fritts 1988). Little is known about
the role of inertia-gravity waves in vertical mixing of
the atmosphere and ocean.

Two limitations of the theoretical analysis are 1) the
approximation of steady, plane-parallel flow to represent
IGW motion, and 2) the assumption that eigenmodes,
growing from small background noise, are relevant. The
analysis can be extended to complex horizontal wave-
number to examine absolute instability, retaining the
assumption of steady flow in a frame of reference trans-
lating with the phase speed of IGW. The criterion for
absolute instability in this context is that modes exist
with group velocity identical to the zonal phase prop-
agation of a background IGW. Differences between
‘‘convective’’ and ‘‘absolute’’ instability usually in-
volve a slight reduction of growth rate and change of
horizontal scale with respect to k 5 km. Further theo-
retical analysis, to be reported separately, indicates that
a saddle point exists in the complex zonal wavenumber
plane for azimuths extending from 08 to about 458. Nu-
merical results of LD97a demonstrate that instability
wave packets evolve during their linear growth stage in
such a way as to keep step with the zonal phase prop-
agation of background IGW.

Eigenmodes represent the optimum growth over an
infinite, as opposed to finite, time. In reality, the initial
noise spectrum has finite amplitude, decreasing with
horizontal wavenumber. The most relevant wavenumber
corresponds to the value of k for which instability (mod-
al or nonmodal) produces large perturbations in the least
amount of time. Consider the growth of eigenmodes on
a background spectrum such that

2p
k

E(k, t) 5 E exp v (k)t. (4.1)0 i1 2k0

The time required for any spectral component to reach
E0 is

p ln(k/k )0t (k) 5 , (4.2)
v (k)i

having a minimum at some k , km (unless the initial
noise is white, i.e., p 5 0). Convection, therefore, should
display zonal scale selection without numerical hyper-
diffusion if p ± 0. This somewhat unrealistic example
assumes that eigenmodes have maximum growth for any
optimization interval but serves to illustrate the point
that a most unstable eigenmode at k 5 km (or the saddle
point of absolute instability) is not necessarily the most
relevant instability in a particular situation.

Nonmodal and/or absolute instabilities may prove im-
portant for saturation of IGW via shear instability along
the curve a 5 as(R) defined in (1.2). Results of Fritts
and Yuan (1989) and those of section 3 demonstrate that
as a is increased, eigenmodes of shear instability in the
steady, parallel-flow approximation become important
a finite distance above this curve, along some other
curve a 5 an(R, a). For subcritical a, this curve begins
at a point near (R, a) 5 (0.7, 1) and extends to lower
a as R is increased, roughly in parallel to the curve
defined by (1.2).

5. Conclusions

Local shear and convective instabilities of internal
inertia-gravity waves (IGW) were examined assuming
a steady, plane-parallel flow with vertical profiles of
horizontal velocity and static stability resembling an
IGW packet in a basic state at rest, without mean vertical
shear. The eigenproblem can be described in terms of
a nondimensional rotation rate R 5 f/ 0 , 1, where fv̂
is the Coriolis parameter, 0 is IGW intrinsic frequency,v̂
and IGW amplitude a, such that a 5 1 for convectively
neutral waves. In the nonrotating case, shear instability
is possible only for convectively supercritical waves,
with horizontal wavevector aligned parallel or nearly
parallel to the plane of IGW propagation. Transverse
convection, with wavevector aligned perpendicular to
the plane of IGW propagation, displays faster growth
than parallel shear or convective instability at any hor-
izontal wavenumber. For intermediate R, eigenmodes in
supercritical IGW are characterized at small horizontal
wavenumber k by a transverse mode of convective in-
stability and a parallel mode of shear instability. The
transverse mode again has larger growth rate at small
k but is suppressed at high wavenumbers where parallel
convection prevails. Shear production of perturbation
kinetic energy in transverse instability is positive (neg-
ative) at intermediate or large (small) R. For R ap-
proaching unity, shear instability takes precedence over
convective instability at all azimuths regardless of a. In
this limit, growth of the most unstable mode is almost
independent of azimuth. It is shown that the parallel
(symmetric and antisymmetric) shear instabilities of an
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IGW are analogous to the unstable sinuous and varicose
modes of a stratified jet. The presence of two instability
critical levels in the zonal direction evidently enhances
growth of the symmetric mode, making it competitive
with transverse shear instability at large R.

Effects of a mean shear were discussed briefly, and
the stability problem of an earlier two-dimensional (non-
rotating) simulation (Dunkerton and Robins 1992) was
revisited, considering eigenmode trajectories in more
detail and examining the growth of transverse convec-
tion. It was shown that negative static stability at the
center of DR’s wave packet is not essential for growth
of the parallel eigenmode. As in the simpler problem
without mean shear, transverse convection is preferred
at any k. Whether the transverse component of insta-
bility would actually be important in a 3D simulation
of DR’s wave packet depends on the initial noise spec-
trum. With isotropic initial noise of moderate amplitude,
the stability analysis suggests that transverse convection
will dominate. With very small initial noise (such that
the zonal wavenumber spectrum is filled by self-inter-
action of the primary wave) parallel shear instability
will prevail, at least initially. A combination of parallel
shear instability and transverse convection may be the
rule in these situations (Fritts et al. 1994; Winters and
Riley 1992; Winters and d’Asaro 1994). Unless the
growth rate of competing modes is nearly equal, how-
ever, one mode will emerge at finite amplitude prior to
the others, assuming similar initial amplitudes. As soon
as one mode attains finite amplitude, the ‘‘basic state’’
is altered from that of a pure IGW. Additional unstable
modes may continue to develop, but their growth rate
and structure will be significantly different from those
implied by a linear stability analysis. Interesting situ-
ations can arise in breaking IGW as a result, for ex-
ample, secondary convective instabilities within local-
ized KH billows or (as suggested by a reviewer) sec-
ondary shear instabilities driven by local stretching and
thinning of vorticity due to counterrotating convective
rolls.

The nonlinear breakdown of inertia-gravity waves
was investigated recently by LD97a,b in a 3D numerical
model, confirming the stability analysis at large R, in-
cluding a weak azimuthal dependence of shear insta-
bility and prevalence of shear over convective instabil-
ity. With adequate spatial resolution, numerical models
enable us to investigate the mixing efficiency of break-
ing IGW. The importance of shear instability to vertical
mixing in the atmosphere and ocean is that the unstable
eigenmodes of shear instability and resulting finite-am-
plitude billows overlap the convectively stable part of
the wave field and thereby cause potentially greater mix-
ing than would otherwise be possible in convectively
unstable waves.
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