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In stably stratified flows, the flux Richardson number Rif is a measure of the ratio

between buoyancy destruction and shear production of turbulent kinetic energy

(TKE). In flows with local equilibrium between shear production, buoyancy destruc-

tion and dissipation of TKE, the critical Rif ,c ≈ 0.21 corresponds to the limit above

which Kolmogorov turbulence can no longer be sustained. Analysis of the TKE

and velocity variance budget equations shows that the critical Rif ,c is increased by

the presence of positive turbulent transport of TKE. This situation is observed, for

example, in the roughness sublayer above plant canopies, as demonstrated using field

data from the Amazon rainforest.
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1 INTRODUCTION

In stably stratified turbulent flows, the competing effects of

shear and buoyancy are traditionally characterized by the

gradient Richardson number Rig = N2∕S2, where N =√
(−g∕𝜌0)(d𝜌∕dz) is the Brunt–Väisälä frequency (g is grav-

itational acceleration, 𝜌(z) is density, 𝜌0 is a reference value

and z is height) and S = du∕dz is the vertical shear of

mean streamwise velocity u(z). Using linear stability analysis

on steady, two-dimensional flow, Miles (1961) and Howard

(1961) showed that Rig (assumed constant in space) has a

critical value of 0.25 above which infinitesimal perturba-

tions are damped. This definition, however, does not nec-

essarily imply that turbulence is not sustained above this

limit, as turbulence has been observed at values of Rig up

to 100 (Zilitinkevich et al., 2008). As other studies report

turbulence decay or growth suppression at certain values

of Rig (Grachev et al., 2013), the existence of the crit-

ical gradient Richardson number remains a controversial

issue.

The flux Richardson number, on the other hand, does have a

critical value observed from various laboratory experiments,

large-eddy simulation and direct numerical simulation (Zil-

itinkevich et al., 2010; Katul et al., 2014). Rif is defined as

the ratio of buoyancy destruction (−B) to shear production

(P) of turbulent kinetic energy (TKE). Although it is related

to Rig by the turbulent Prandtl number (Rig∕Rif = Prt =
KM∕KH , where KH and KM are the heat and momentum eddy

diffusivities, respectively), the existence of a finite asymp-

totic value of Rif , while Rig remains unbounded, can be

explained by the failure of the eddy diffusivity hypothesis: as

the mean temperature gradient increases, the heat flux (and

therefore−B) remains bounded by a counter-gradient flux due

to the buoyancy effect of potential temperature fluctuations

(Zilitinkevich et al., 2007).

From budget equations of TKE and density (or virtual

temperature) variance, Ellison (1957) found Rif ,c ≈ 0.15

whereas Townsend (1958) obtained Rif ,c ≈ 0.50, the differ-

ence resulting from different closure assumptions (Yamada,

1975). Using velocity variance budget equations with the

simplest linear Rotta closure model for return-to-isotropy

terms (Rotta, 1951), and assuming isotropy for the velocity

variance dissipation terms, Bou-Zeid et al. (2018) obtained

Rif ,c = 0.21. This is exactly equal to the value obtained

by Mellor and Yamada (1974) and Yamada (1975) using

analytical models for the full Reynolds stress tensor and

temperature variance budgets, along with more detailed

redistribution models. In all of these analyses, the usual

assumptions of the canonical atmospheric surface layer

(ASL) are invoked (stationarity, horizontal homogeneity, and

Q J R Meteorol Soc. 2019;145:1551–1558. wileyonlinelibrary.com/journal/qj © 2019 Royal Meteorological Society 1551



1552 FREIRE ET AL.

negligible turbulent transport of TKE or velocity and scalar

variances).

In the canonical ASL, the flux Richardson number is often

presented in the framework of Monin–Obukhov similarity

theory (MOST) and is written in the form Rif = 𝜁𝜙−1
m (𝜁),

where 𝜁 = z∕L is the stability parameter, z is the height

above ground level, L is the Obukhov length and 𝜙m(𝜁) is the

non-dimensional vertical gradient of mean streamwise veloc-

ity. Experimental data show that, in the stable ASL, 𝜙m(𝜁) =
1+𝛽𝜁 with 𝛽 ≈ 5, resulting in an asymptotic Rif → 1∕𝛽 ≈ 0.2

for 𝜁 → ∞ (increasing stability) (Wyngaard, 2010, p. 281).

This result provides an upper limit for Rif which is remarkably

close to the critical value obtained from TKE and velocity

variance budgets. Note that MOST also assumes steady-state

and horizontally homogeneous conditions, and although it

does not explicitly assume zero turbulent transport, the sim-

ilarity functions obtained empirically correspond to a TKE

budget in which most of the local production is balanced by

local buoyant destruction and dissipation (Chamecki et al.,
2018).

In spite of the consensus over Rif ,c ≈ 0.20 − 0.25 from

theory and observations (Zilitinkevich et al., 2010), in the

atmosphere this value is likely to be related to the assumptions

of the canonical ASL. For example, Grachev et al. (2013)

observed that a well-defined inertial subrange with a −5∕3

slope on the energy spectrum (i.e., Kolmogorov turbulence)

was observed for Rif up to 0.20 − 0.25 in the ASL over the

Arctic. In contrast, Babić and Rotach (2018) observed Kol-

mogorov turbulence in data with Rif > 0.25 from measure-

ments in a deciduous canopy roughness sublayer, speculating

that the cause may be associated with surface heterogene-

ity. Chamecki et al. (2018) noted a large number of data

points in the range 0.25 < Rif < 1.5 in the roughness

sublayer above the Amazon rainforest, mostly in conditions

for which local production was smaller than local dissipation

of TKE (𝜖).

In this work, we hypothesize that turbulent transport of

TKE can maintain Kolmogorov turbulence above Rif ≈
0.20 − 0.25. Extending the approach presented by Bou-Zeid

et al. (2018), we derive a new Rif ,c that includes the TKE

transport term. In the reduced TKE phase space proposed

by Chamecki et al. (2018), this defines a new region of

transport-enabled turbulence. We use the same dataset as

presented by Chamecki et al. (2018) to test this hypothesis

and characterize roughness-sublayer turbulence above a forest

canopy in this regime.

2 CRITICAL RICHARDSON NUMBER IN
THE PRESENCE OF TURBULENT
TRANSPORT

We start from the reduced TKE budget as defined by

Chamecki et al. (2018), assuming that the turbulent

transport of TKE is solely responsible for the local

production–dissipation imbalance (R), that is,

−u′w′ du
dz

⏟⏞⏟⏞⏟
P

+
g

𝜃v
w′𝜃′v

⏟⏞⏟⏞⏟
B

−𝜖 = R ≈ dw′e
dz
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. (1)

Similarly, we write the half-variance budget equations

under stationary and horizontally homogeneous conditions as
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where e = (u′u′ + v′v′ +w′w′)∕2 and e is the TKE, u, v and w
are the streamwise, cross-stream and vertical velocity compo-

nents, respectively, 𝜃v is virtual temperature, 𝜌0 is a reference

density, p is pressure, and 𝜖, 𝜖u, 𝜖v and 𝜖w are the dissipation

rates of the TKE and half-variance components, respectively.

Overbars and primes represent the ensemble mean and fluc-

tuation, respectively. To simplify notation, hereafter we use P
for shear production, B for buoyancy production/destruction,

T for the turbulent transport and Π for pressure redistribution,

as indicated in Equations 1–4.

As proposed by Bou-Zeid et al. (2018), by summing

Equations 2 and 3, assuming an approximately isotropic dis-

sipation rate to write

𝜖u + 𝜖v = 2𝜖w (5)

and using Equation 4 to replace 𝜖w, all three variance

equations can be combined into one equation given by

P + Tu + Tv + Πu + Πv = 2B + 2Tw + 2Πw. (6)

Because the pressure redistribution terms add up to zero,

that is,

Πu + Πv = −Πw, (7)

this equation can be further reduced to

P + Tu + Tv − 2Tw − 3Πw = 2B (8)

or, rewriting it,

Πw

P
+ 2Tw − Tu − Tv

3P
= 1

3
+ 2

3
Rif , (9)

where Rif = −B∕P is the flux Richardson number.

Following Mellor and Yamada (1974) and Bou-Zeid et al.
(2018), a linear Rotta-type closure is adopted for the pressure

redistribution term (Rotta, 1951; Davidson, 2004), namely

Πw = −c𝜖
e

(
w′w′ − 2

3
e
)
. (10)
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This closure is used in Equation 9, which is then combined

with Equation 1 in the form

𝜖∕P = 1 − Rif + Te∕P, (11)

resulting in

w′w′

e
= − 1

3c

[
1 + 2Rif − 3Tw∕P + Te∕P

1 − Rif + Te∕P

]
+ 2

3
. (12)

This relationship between w′w′ and Rif reveals a critical

value of Rif over which w′w′ would become negative, and the

constraint of w′w′ > 0 yields a constraint on Rif :

Rif <
2c − 1

2c + 2
+ 3

2c + 2

Tw

P
+ 2c − 1

2c + 2

Te

P
. (13)

In the absence of turbulent transport (i.e., Te = Tw = 0)

and adopting c = 0.9 for the closure constant of the Rotta

model, this equation yields a critical Richardson number

Rif ,c ≈ 0.21 (Bou-Zeid et al., 2018). For positive transport,

this critical value is enhanced by the ratios Tw∕P and Te∕P,

allowing turbulence to be sustained under stronger stratifica-

tion. Equation 13 can be simplified even further by assuming

Tw = 𝛼Te (see Figure S1 in the Supporting Information),

which gives

Rif <
2c − 1

2c + 2
+ 3𝛼 + 2c − 1

2c + 2

Te

P
. (14)

For positive net TKE turbulent transport Te > 0 (imply-

ing its vertical gradient in Equation 1 is negative and it is

thus a source that augments TKE), Equation 14 provides a

transport-enhanced critical flux Richardson number. If the

values c = 0.9 (Katul et al., 2013) and 𝛼 = 0.28 (valid for the

present data; see Figure S1 in the Supporting Information) are

used, this yields a critical flux Richardson number

Rif ,c ≈ 0.21 + 0.43 Te∕P. (15)

It is important to note that Rotta’s model (Equation 10) is

the simplest closure available for the pressure redistribution

term, representing only the slow part of the process (David-

son, 2004). In the presence of large mean velocity gradients,

such as those for the flow above plant canopies, fast redistri-

bution terms can also be important (see, e.g., Launder et al.,
1975). For simplicity and generality, we focus on first-order

effects and use only the slow component here.

3 FIELD DATA

Data from the GoAmazon experiment (Fuentes et al., 2016)

are used to test the existence of turbulence and its characteris-

tics in the transport-enabled region predicted by Equation 14.

This dataset consists of wind velocity (three components)

and virtual temperature measured at 20 Hz by nine sonic

anemometers (model CSAT3, Campbell Scientific, Inc.,

Logan, UT) mounted on a 50 m tower in the Amazon rain-

forest. Measurement heights correspond to z∕h = 0.20, 0.39,

0.52, 0.63, 0.70, 0.90, 1.00, 1.15 and 1.38, where h= 35 m

is the approximate canopy height. Data were collected

continuously between March 2014 and January 2015 and sep-

arated into blocks of 30 min starting at 0000 h local time.

Blocks with more than 1 s of consecutive error flags were dis-

carded, and the remaining missing values were replaced by

the previous measurement. A planar fit for the entire dataset

was performed to correct for instrument tilting (Wilczak et al.,
2001) using blocks with mean wind direction at the highest

anemometer within ±90◦ of the instrument axis (the remain-

ing blocks were discarded). Blocks with negative heat flux at

z∕h = 1 were filtered with a 3-min top-hat high-pass filter

to eliminate non-turbulent oscillations that can be significant

under stably stratified conditions (Mahrt, 2014). Using the

criteria proposed by Vickers and Mahrt (1997), blocks with

non-stationary ratios larger than or equal to 0.5 were dis-

carded. Blocks were further selected by the existence of an

inertial subrange in the second-order longitudinal structure

function with a slope within 10% of the theoretical predic-

tion of 2/3 (Kolmogorov, 1941), estimated in the range 0.5 ≤

r ≤ 2 m, which was then used to infer TKE dissipation rates

via Δu2 = C2(r𝜖)2∕3 with C2 = 1.97 following Chamecki

and Dias (2004). A time-varying displacement height d0 was

estimated from measurements of momentum flux inside the

canopy (Pan and Chamecki, 2016) and blocks with d0 < 0 or

d0 > h were also discarded. A total of 850 blocks from each

height remained for the present analysis.

The data analyses focus on turbulence in the roughness

sublayer above the forest canopy, that is, at z∕h ≥ 1. There-

fore, mean velocity gradients needed to estimate the shear

production were determined using a second-order polyno-

mial fit in ln(z) (Högström, 1988) using data from the four

upper anemometers, as they follow an approximately loga-

rithmic profile (see Chamecki et al., 2018 for examples). To

estimate turbulent transport of TKE, a second-order polyno-

mial fit in z was adjusted to the TKE vertical flux w′e from

the upper three anemometers, because fluxes at z∕h = 0.90

did not always conform to the curvature of the upper three

anemometers. Although it is not possible to assess the qual-

ity of the fit (as these are fits of second-order polynomials to

three data points), the overall agreement with the literature on

canopy flows serves as an indirect indication that the fits are

reasonable.

4 RESULTS

To establish confidence in our dataset and provide a basis for

comparison, we first look at results under near-neutral condi-

tions (defined as |Rif | < 0.04 at z∕h = 1.38). In this case,

the normalized shear length-scale Ls∕h = [u(h)∕(du∕dz)h]∕h
is on average 0.47, which is typical for forest environments

(Finnigan, 2000). The TKE increases monotonically with

height, with a very large gradient in the upper half of the

canopy (Figure 1a). This produces a turbulent flux of TKE

that is predominantly negative inside the canopy and positive

above (Figure 1b), with a positive gradient where z∕h > 1.
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(a) (b) (c)

FIGURE 1 Vertical profiles of normalized (a) TKE, (b) turbulent flux of TKE and (c) net vertical turbulent transport of TKE for neutral conditions

(|Rif | < 0.04 at z∕h = 1.38, open black symbols) and stable conditions (Ri ≥ 0.04 at z∕h = 1.38, closed grey symbols). Circles represent averages over data

blocks and error bars represent one standard deviation. The TKE turbulent transport was estimated from a second-order polynomial fit to the turbulent flux of

TKE above the canopy (three uppermost points)

(a) (b)

FIGURE 2 (a) Normalized local imbalance between production and dissipation of TKE (red squares) and turbulent transport of TKE (black circles)

displayed as a function of the flux Richardson number Rif . (b) Kurtosis of streamwise (Kuu) and vertical (Kuw) velocities as a function of the flux Richardson

number. The symbols represent ensemble averages conditioned on Rif and the error bars represent one standard deviation. The dashed line indicates Rif = 0.21

Thus, in agreement with the current understanding of canopy

flows in neutral conditions (Finnigan, 2000), we observe net

turbulent transport of TKE into the canopy region (Te <

0 for z∕h > 1; Figure 1c). This leads to an imbalance

between local production and dissipation above the canopy

(P∕𝜖 > 1), which decreases with height, reaching a nearly

balanced state at the transition between the roughness sub-

layer and the surface layer above (Pan and Chamecki, 2016).

Under stable conditions, the shear length-scale is reduced,

on average, to Ls∕h = 0.34, suggesting less penetration of

shear-layer eddies into the canopy. However, the main point

of interest here is that the TKE profile is no longer mono-

tonic in the near-canopy region, displaying a clear maximum

at the canopy top. This leads to predominantly positive net

turbulent transport of TKE far above the canopy (at z∕h =
1.38; Figure 1c), so that here (P + B)∕𝜖 < 1, as observed

by Chamecki et al. (2018). Although this particular feature

has not yet been discussed in the literature, it has also been

observed above deciduous forests (Leclerc et al., 1990; Babić

and Rotach, 2018). In the present study, the existence of this

region with positive net transport of TKE is connected with

the existence of Kolmogorov turbulence with Rif > 0.21, as

discussed next.

As an initial step in exploring the relationship between

the flux Richardson number and turbulent transport of TKE,

Figure 2a presents the normalized transport Te∕𝜖 and the

residual R∕𝜖 (Equation 1) versus Rif for the data measured

above the forest canopy (z∕h ≥ 1). Despite the large amount

of scatter, it is quite remarkable how clearly, on average, the

line Rif = 0.21 separates points with positive transport from

points with negative transport. It is also clear that, on average,

the turbulent transport of TKE is responsible for a significant
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portion of the imbalance between local production and dissi-

pation of TKE. Figure 2b shows the increase of kurtosis of

streamwise and vertical velocity with Rif in the stable case,

indicating an increase in the importance of strong events as

stability increases.

To demonstrate more clearly the relationship between the

flux Richardson number and transport of TKE, the same

data are displayed on the TKE phase space developed by

Chamecki et al. (2018) in Figure 3. This two-dimensional dia-

gram presents data points according to P∕𝜖 and B∕𝜖, and the

local imbalance between TKE production and dissipation is

proportional to the distance to the local balance line (indi-

cated in Figure 3 by the black solid line given by B+P= 𝜖).

Each subfigure also explicitly shows the value of Rif as a

straight line emanating from the origin (the line of con-

stant Rif increasing clockwise). The runs with Rif > 0.21

present very large normalized TKE (e∕u2
s , where us is the

local friction velocity) and predominantly positive net turbu-

lent transport of TKE (Figure 3a,b). These results suggest that

the large TKE content in this region of the phase space is not

associated with local production, but is rather transported by

turbulence from elsewhere (note that non-turbulent variance

typically observed under stable conditions has been removed

by the 3-min high-pass filter used for stable runs). Thus,

turbulent transport seems to sustain turbulence in stratified

environments with Rif > 0.21.

Given that transport can maintain turbulence above Rif =
0.21, it is of interest to delineate this region in the TKE phase

space. To do so, we must assume that the local imbalance

between production and dissipation is only caused by turbu-

lent transport, so that Equation 1 can be used in the form

Te∕𝜖 = 1 − B∕𝜖 − P∕𝜖 to rewrite Equation 14 as

B
𝜖
>

𝛼

(1 − 𝛼)
P
𝜖
+ 1 − 3𝛼 − 2c

3 − 3𝛼
. (16)

Equation 16 is displayed in Figure 3c, marking the region

where turbulent transport is sufficient to sustain turbulence.

However, Equation 1 is only approximately satisfied by the

observations, as the turbulent transport is estimated inde-

pendently from the imbalance (other potential sources of

imbalance are non-stationarity, mean advection and pressure

transport). Hereafter, we restrict our analysis to only those

runs in which turbulent transport is a significant portion of

the total imbalance. We define the parameter

𝜂 = (R + Te)2

R2 + T2
e
, (17)

which is a measure of the fraction of the imbalance accounted

for by the turbulent transport. Note that by construction 0 ≤

𝜂 ≤ 2, with 𝜂 = 0 implying that all the imbalance is caused by

transport (−Te = R). The distribution of 𝜂 for the GoAmazon

data can be found in Figure S2 in the Supporting Information.

Hereafter we restrict the data analysis to only those runs with

𝜂 ≤ 0.2, which ensures that transport is at least 50% of the

total imbalance (−Te ≥ 0.5R).

(a)

(b)

(c)

FIGURE 3 Data from z∕h ≥ 1 displayed on the TKE phase space,

colour-coded based on values of (a) TKE normalized by local friction

velocity (e∕u2
s ) and (b) turbulent transport of TKE normalized by the local

dissipation rate (Te∕𝜖). (c) The same as (b) but including only data for

B < 0. The orange line represents Equation 16 for c = 0.9, the yellow region

represents the transport-enabled region and the grey lines represent Rif ,c and

Equation 16 for c = 0.8 and 1. Only points with 𝜂 ≤ 0.2 are displayed in (c)

Most of the remaining runs (68 of the 86 runs with

Rif > 0.21) fall in the region of transport-enabled turbu-

lence as predicted by Equation 14 (Figure 3c). All these points

have positive net transport as expected. This result does not

depend on the choice of c = 0.9, as the change in Rif ,c
(as well as the change in the region of transport-enabled

turbulence) is small for 0.8 ≤ c ≤ 1 (see Figure 3c). As

imposed by the data selection criterion, all points shown in

Figure 3c present a well-defined inertial subrange with a

2/3 slope region in the second-order structure function of
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(a) (b)

FIGURE 4 Second-order structure function of streamwise velocity (solid line) and vertical velocity (dashed line) normalized by the friction velocity at the

canopy top (u∗) and the dissipation-based length-scale 𝓁𝜖 = u3
∗∕𝜖 (Pan and Chamecki, 2016) (average over data blocks). Shaded areas are one standard

deviation. Dashed-dotted straight line corresponds to the 2/3 slope. Results are shown for (a) transport-enabled turbulence (68 runs) and (b) stable runs with

0.04 ≤ Rif ≤ 0.21 (211 runs). Note that the data were high-pass filtered before the structure functions were calculated, which affects the large scales of

streamwise velocity (see Figure S4 in the Supporting Information)

streamwise velocity (Figure 4). An inertial subrange is also

clearly present in the vertical velocity structure function, and

no appreciable differences are found in the structure func-

tions for transport-enabled turbulence and other stable runs

with Rif < 0.21. Thus, we can conclude that the turbu-

lence maintained by turbulent transport in the yellow region

of the diagram displays a clear “Kolmogorov” energy cas-

cade. This is in contrast to the surface layer results reported

by Grachev et al. (2013), where large TKE transport is likely

not present. Note, however, that the value of Δw2∕Δu2 ≈
1 in the inertial subrange indicates that the portion of the

inertial subrange sampled in these data deviates from local

isotropy (as local isotropy implies a ratio of 4/3 (Pope, 2000)).

Ratios Δw2∕Δu2 ≈ 1 have also been observed in the ASL by

Chamecki and Dias (2004) and Chamecki et al. (2018), and in

the roughness sublayer by Babić and Rotach (2018). Although

the evidence for anisotropy within the inertial subrange of

atmospheric turbulence is building up, further investigation

is needed to discard other possibilities. At this point, it is

not clear if local isotropy will be reached at scales smaller

than those typically sampled by sonic anemometers or if these

sensors introduce distortions in the flow field that lead to

anisotropic ratios. Finally, the remaining 18 runs, which are

outside the transport-enabled region, also display a clear iner-

tial subrange, and the existence of Kolmogorov turbulence in

these runs cannot be explained by turbulent transport of TKE

(as Rif > Rif ,c).

Although turbulence with Rif > 0.21 is sustained by trans-

port rather than by local production alone, it does not present

distinctly different characteristics from typical turbulence in

the stable ASL. A visual inspection of the time series of

vertical velocity (not shown) suggests that most runs are

characterized by continuous turbulence, with very few runs

(both above and below the limit Rif ,c = 0.21) display-

ing mild global intermittency. Runs with stronger global

intermittency, typically observed in strongly stratified sur-

face layers (as shown in, e.g., Sun et al., 2002, 2004), were

removed from our analyses by the stationarity tests applied.

We do not observe any trend in the non-stationarity ratios

with Rif (see Figure S3 in the Supporting Information),

confirming that the transport-enabled turbulence identified

in the present data is in an equilibrium state, unlike the

decaying turbulence observed during periods of increased

stratification by Grachev et al. (2013). Perhaps the most

distinctive feature of the turbulence at elevated values of

Rif is the increase in the kurtosis of streamwise and ver-

tical velocity components (Figure 2b). This departure from

Gaussianity, which is expected in stably stratified turbulence

(Chu et al., 1996; Ferrero and Anfossi, 1998), increases

gradually with increasing Rif and does not suggest a sharp

transition in behaviour at the onset of transport-enabled

turbulence.

5 CONCLUSION

A simple analysis of the budgets for TKE and variances of

the velocity components, with conventional closure assump-

tions but including the turbulent transport of TKE, reveals

that the critical flux Richardson number for the existence

of Kolmogorov turbulence can be increased by positive tur-

bulent transport (as compared to the case with negligible

transport for which Rif ,c ≈ 0.21). In the TKE phase space,

this leads to a well-defined region of transport-enabled tur-

bulence. Data in the canopy roughness sublayer collected

over the Amazon rainforest display a region of positive trans-

port under stable conditions. We show that, for data selected

based on the existence of a Kolmogorov inertial subrange,

transport becomes positive around Rif ≈ 0.21. For the cases

in which the transport corresponds to at least half of the
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imbalance between TKE local production and dissipation,

the transport explains the existence of Kolmogorov turbu-

lence in 79% of the 86 runs with Rif > 0.21. This result

confirms our initial hypothesis that in flows where turbulent

transport of TKE is positive, Kolmogorov turbulence can be

sustained under stronger stable stratifications than previously

assumed.
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